Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−16663+3773,x2=166−63+3773
Alternative Form
x1≈−0.88198,x2≈0.122944
Evaluate
−83x2=−(−7x×9)−9
Simplify
More Steps

Evaluate
−(−7x×9)−9
Multiply the terms
−(−63x)−9
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
63x−9
−83x2=63x−9
Move the expression to the left side
−83x2−63x+9=0
Multiply both sides
83x2+63x−9=0
Substitute a=83,b=63 and c=−9 into the quadratic formula x=2a−b±b2−4ac
x=2×83−63±632−4×83(−9)
Simplify the expression
x=166−63±632−4×83(−9)
Simplify the expression
More Steps

Evaluate
632−4×83(−9)
Multiply
More Steps

Multiply the terms
4×83(−9)
Rewrite the expression
−4×83×9
Multiply the terms
−2988
632−(−2988)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
632+2988
Evaluate the power
3969+2988
Add the numbers
6957
x=166−63±6957
Simplify the radical expression
More Steps

Evaluate
6957
Write the expression as a product where the root of one of the factors can be evaluated
9×773
Write the number in exponential form with the base of 3
32×773
The root of a product is equal to the product of the roots of each factor
32×773
Reduce the index of the radical and exponent with 2
3773
x=166−63±3773
Separate the equation into 2 possible cases
x=166−63+3773x=166−63−3773
Use b−a=−ba=−ba to rewrite the fraction
x=166−63+3773x=−16663+3773
Solution
x1=−16663+3773,x2=166−63+3773
Alternative Form
x1≈−0.88198,x2≈0.122944
Show Solution
