Question
Solve the equation
x1=−2,x2=0,x3=2
Evaluate
−8x×16=−16x3×2
Multiply the terms
−128x=−16x3×2
Multiply the terms
−128x=−32x3
Add or subtract both sides
−128x−(−32x3)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−128x+32x3=0
Factor the expression
32x(−4+x2)=0
Divide both sides
x(−4+x2)=0
Separate the equation into 2 possible cases
x=0−4+x2=0
Solve the equation
More Steps

Evaluate
−4+x2=0
Move the constant to the right-hand side and change its sign
x2=0+4
Removing 0 doesn't change the value,so remove it from the expression
x2=4
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4
Simplify the expression
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
x=±2
Separate the equation into 2 possible cases
x=2x=−2
x=0x=2x=−2
Solution
x1=−2,x2=0,x3=2
Show Solution
