Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−22+22,x2=2−2+22
Alternative Form
x1≈−3.345208,x2≈1.345208
Evaluate
−9=−2x2−4x
Swap the sides
−2x2−4x=−9
Move the expression to the left side
−2x2−4x+9=0
Multiply both sides
2x2+4x−9=0
Substitute a=2,b=4 and c=−9 into the quadratic formula x=2a−b±b2−4ac
x=2×2−4±42−4×2(−9)
Simplify the expression
x=4−4±42−4×2(−9)
Simplify the expression
More Steps

Evaluate
42−4×2(−9)
Multiply
More Steps

Multiply the terms
4×2(−9)
Rewrite the expression
−4×2×9
Multiply the terms
−72
42−(−72)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
42+72
Evaluate the power
16+72
Add the numbers
88
x=4−4±88
Simplify the radical expression
More Steps

Evaluate
88
Write the expression as a product where the root of one of the factors can be evaluated
4×22
Write the number in exponential form with the base of 2
22×22
The root of a product is equal to the product of the roots of each factor
22×22
Reduce the index of the radical and exponent with 2
222
x=4−4±222
Separate the equation into 2 possible cases
x=4−4+222x=4−4−222
Simplify the expression
More Steps

Evaluate
x=4−4+222
Divide the terms
More Steps

Evaluate
4−4+222
Rewrite the expression
42(−2+22)
Cancel out the common factor 2
2−2+22
x=2−2+22
x=2−2+22x=4−4−222
Simplify the expression
More Steps

Evaluate
x=4−4−222
Divide the terms
More Steps

Evaluate
4−4−222
Rewrite the expression
42(−2−22)
Cancel out the common factor 2
2−2−22
Use b−a=−ba=−ba to rewrite the fraction
−22+22
x=−22+22
x=2−2+22x=−22+22
Solution
x1=−22+22,x2=2−2+22
Alternative Form
x1≈−3.345208,x2≈1.345208
Show Solution
