Question
Solve the quadratic equation
Solve by factoring
Solve using the quadratic formula
Solve by completing the square
Load more

x1=328,x2=332
Alternative Form
x1=9.3˙,x2=10.6˙
Evaluate
−9(x−10)2=−4
Expand the expression
More Steps

Evaluate
−9(x−10)2
Expand the expression
More Steps

Evaluate
(x−10)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×10+102
Calculate
x2−20x+100
−9(x2−20x+100)
Apply the distributive property
−9x2−(−9×20x)−9×100
Multiply the numbers
−9x2−(−180x)−9×100
Multiply the numbers
−9x2−(−180x)−900
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−9x2+180x−900
−9x2+180x−900=−4
Move the expression to the left side
−9x2+180x−896=0
Factor the expression
More Steps

Evaluate
−9x2+180x−896
Rewrite the expression
−9x2+(84+96)x−896
Calculate
−9x2+84x+96x−896
Rewrite the expression
−3x×3x+3x×28+32×3x−32×28
Factor out −3x from the expression
−3x(3x−28)+32×3x−32×28
Factor out 32 from the expression
−3x(3x−28)+32(3x−28)
Factor out 3x−28 from the expression
(−3x+32)(3x−28)
(−3x+32)(3x−28)=0
When the product of factors equals 0,at least one factor is 0
−3x+32=03x−28=0
Solve the equation for x
More Steps

Evaluate
−3x+32=0
Move the constant to the right-hand side and change its sign
−3x=0−32
Removing 0 doesn't change the value,so remove it from the expression
−3x=−32
Change the signs on both sides of the equation
3x=32
Divide both sides
33x=332
Divide the numbers
x=332
x=3323x−28=0
Solve the equation for x
More Steps

Evaluate
3x−28=0
Move the constant to the right-hand side and change its sign
3x=0+28
Removing 0 doesn't change the value,so remove it from the expression
3x=28
Divide both sides
33x=328
Divide the numbers
x=328
x=332x=328
Solution
x1=328,x2=332
Alternative Form
x1=9.3˙,x2=10.6˙
Show Solution
