Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
p1=4221−521,p2=4221+521
Alternative Form
p1≈−0.045545,p2≈1.045545
Evaluate
−9p×7(p−1)=−3
Multiply the terms
−63p(p−1)=−3
Expand the expression
More Steps

Evaluate
−63p(p−1)
Apply the distributive property
−63p×p−(−63p×1)
Multiply the terms
−63p2−(−63p×1)
Any expression multiplied by 1 remains the same
−63p2−(−63p)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−63p2+63p
−63p2+63p=−3
Move the expression to the left side
−63p2+63p+3=0
Multiply both sides
63p2−63p−3=0
Substitute a=63,b=−63 and c=−3 into the quadratic formula p=2a−b±b2−4ac
p=2×6363±(−63)2−4×63(−3)
Simplify the expression
p=12663±(−63)2−4×63(−3)
Simplify the expression
More Steps

Evaluate
(−63)2−4×63(−3)
Multiply
More Steps

Multiply the terms
4×63(−3)
Rewrite the expression
−4×63×3
Multiply the terms
−756
(−63)2−(−756)
Rewrite the expression
632−(−756)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
632+756
Evaluate the power
3969+756
Add the numbers
4725
p=12663±4725
Simplify the radical expression
More Steps

Evaluate
4725
Write the expression as a product where the root of one of the factors can be evaluated
225×21
Write the number in exponential form with the base of 15
152×21
The root of a product is equal to the product of the roots of each factor
152×21
Reduce the index of the radical and exponent with 2
1521
p=12663±1521
Separate the equation into 2 possible cases
p=12663+1521p=12663−1521
Simplify the expression
More Steps

Evaluate
p=12663+1521
Divide the terms
More Steps

Evaluate
12663+1521
Rewrite the expression
1263(21+521)
Cancel out the common factor 3
4221+521
p=4221+521
p=4221+521p=12663−1521
Simplify the expression
More Steps

Evaluate
p=12663−1521
Divide the terms
More Steps

Evaluate
12663−1521
Rewrite the expression
1263(21−521)
Cancel out the common factor 3
4221−521
p=4221−521
p=4221+521p=4221−521
Solution
p1=4221−521,p2=4221+521
Alternative Form
p1≈−0.045545,p2≈1.045545
Show Solution
