Question
Solve the equation
Solve for a
Solve for b
a=2b1−1+4b2a=2b1+1+4b2
Evaluate
−a×ab=−a−b
Multiply the terms
−a2b=−a−b
Rewrite the expression
−ba2=−a−b
Move the expression to the left side
−ba2−(−a−b)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−ba2+a+b=0
Substitute a=−b,b=1 and c=b into the quadratic formula a=2a−b±b2−4ac
a=2(−b)−1±12−4(−b)b
Simplify the expression
a=−2b−1±12−4(−b)b
Simplify the expression
More Steps

Evaluate
12−4(−b)b
1 raised to any power equals to 1
1−4(−b)b
Multiply
More Steps

Multiply the terms
4(−b)b
Rewrite the expression
−4b×b
Multiply the terms
−4b2
1−(−4b2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+4b2
a=−2b−1±1+4b2
Separate the equation into 2 possible cases
a=−2b−1+1+4b2a=−2b−1−1+4b2
Simplify the expression
More Steps

Evaluate
a=−2b−1+1+4b2
Divide the terms
More Steps

Evaluate
−2b−1+1+4b2
Use b−a=−ba=−ba to rewrite the fraction
−2b−1+1+4b2
Rewrite the expression
2b1−1+4b2
a=2b1−1+4b2
a=2b1−1+4b2a=−2b−1−1+4b2
Solution
a=2b1−1+4b2a=2b1+1+4b2
Show Solution
