Question
Solve the equation
x=2kπ,k∈Z
Alternative Form
x=90∘k,k∈Z
Evaluate
cos2(x)sin2(x)1=sec2(x)csc2(x)
Find the domain
More Steps

Evaluate
⎩⎨⎧cos2(x)sin2(x)=0x=2π+kπ,k∈Zx=kπ,k∈Z
Calculate
More Steps

Evaluate
cos2(x)sin2(x)=0
Multiply the terms
(cos(x)sin(x))2=0
The only way a power can not be 0 is when the base not equals 0
cos(x)sin(x)=0
Apply the zero product property
{cos(x)=0sin(x)=0
Solve the inequality
{x=2π+kπ,k∈Zsin(x)=0
Solve the inequality
{x=2π+kπ,k∈Zx=kπ,k∈Z
Find the intersection
x=2kπ,k∈Z
⎩⎨⎧x=2kπ,k∈Zx=2π+kπ,k∈Zx=kπ,k∈Z
Find the intersection
x=2kπ,k∈Z
cos2(x)sin2(x)1=sec2(x)csc2(x),x=2kπ,k∈Z
Multiply the terms
(cos(x)sin(x))21=sec2(x)csc2(x)
Multiply the terms
(cos(x)sin(x))21=(sec(x)csc(x))2
Rewrite the expression
(cos(x)sin(x))21=(cos(x)1×sin(x)1)2
Expand the expression
cos2(x)sin2(x)1=cos−2(x)sin−2(x)
Calculate
cos2(x)sin2(x)1=(cos(x)sin(x))21
Cross multiply
(cos(x)sin(x))2=cos2(x)sin2(x)
Move the expression to the left side
(cos(x)sin(x))2−cos2(x)sin2(x)=0
Calculate
More Steps

Evaluate
(cos(x)sin(x))2−cos2(x)sin2(x)
Rewrite the expression
0×cos2(x)sin2(x)
Any expression multiplied by 0 equals 0
0
0=0
The statement is true for any value of x
x∈R
Check if the solution is in the defined range
x∈R,x=2kπ,k∈Z
Solution
x=2kπ,k∈Z
Alternative Form
x=90∘k,k∈Z
Show Solution
