Question
Simplify the expression
27x4−4295x3+375x2
Evaluate
21(4x2−5x×10)×41(7x2−5x×12)
Multiply the terms
21(4x2−50x)×41(7x2−5x×12)
Multiply the terms
21(4x2−50x)×41(7x2−60x)
Multiply the terms
More Steps

Evaluate
21×41
To multiply the fractions,multiply the numerators and denominators separately
2×41
Multiply the numbers
81
81(4x2−50x)(7x2−60x)
Multiply the first two terms
More Steps

Evaluate
81(4x2−50x)
Apply the distributive property
81×4x2−81×50x
Multiply the numbers
More Steps

Evaluate
81×4
Reduce the numbers
21×1
Multiply the numbers
21
21x2−81×50x
Multiply the numbers
More Steps

Evaluate
81×50
Reduce the numbers
41×25
Multiply the numbers
425
21x2−425x
(21x2−425x)(7x2−60x)
Apply the distributive property
21x2×7x2−21x2×60x−425x×7x2−(−425x×60x)
Multiply the terms
More Steps

Evaluate
21x2×7x2
Multiply the numbers
27x2×x2
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
27x4
27x4−21x2×60x−425x×7x2−(−425x×60x)
Multiply the terms
More Steps

Evaluate
21x2×60x
Multiply the numbers
More Steps

Evaluate
21×60
Reduce the numbers
1×30
Simplify
30
30x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
30x3
27x4−30x3−425x×7x2−(−425x×60x)
Multiply the terms
More Steps

Evaluate
−425x×7x2
Multiply the numbers
More Steps

Evaluate
−425×7
Multiply the numbers
−425×7
Multiply the numbers
−4175
−4175x×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
−4175x3
27x4−30x3−4175x3−(−425x×60x)
Multiply the terms
More Steps

Evaluate
−425x×60x
Multiply the numbers
More Steps

Evaluate
−425×60
Reduce the numbers
−25×15
Multiply the numbers
−375
−375x×x
Multiply the terms
−375x2
27x4−30x3−4175x3−(−375x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
27x4−30x3−4175x3+375x2
Solution
More Steps

Evaluate
−30x3−4175x3
Collect like terms by calculating the sum or difference of their coefficients
(−30−4175)x3
Subtract the numbers
More Steps

Evaluate
−30−4175
Reduce fractions to a common denominator
−430×4−4175
Write all numerators above the common denominator
4−30×4−175
Multiply the numbers
4−120−175
Subtract the numbers
4−295
Use b−a=−ba=−ba to rewrite the fraction
−4295
−4295x3
27x4−4295x3+375x2
Show Solution

Factor the expression
41x2(2x−25)(7x−60)
Evaluate
21(4x2−5x×10)×41(7x2−5x×12)
Multiply the terms
21(4x2−50x)×41(7x2−5x×12)
Multiply the terms
21(4x2−50x)×41(7x2−60x)
Multiply the terms
More Steps

Evaluate
21×41
To multiply the fractions,multiply the numerators and denominators separately
2×41
Multiply the numbers
81
81(4x2−50x)(7x2−60x)
Factor the expression
More Steps

Evaluate
4x2−50x
Rewrite the expression
2x×2x−2x×25
Factor out 2x from the expression
2x(2x−25)
81×2x(2x−25)(7x2−60x)
Factor the expression
More Steps

Evaluate
7x2−60x
Rewrite the expression
x×7x−x×60
Factor out x from the expression
x(7x−60)
81×2x(2x−25)x(7x−60)
Solution
41x2(2x−25)(7x−60)
Show Solution

Find the roots
x1=0,x2=760,x3=225
Alternative Form
x1=0,x2=8.5˙71428˙,x3=12.5
Evaluate
21(4x2−5x×10)×41(7x2−5x×12)
To find the roots of the expression,set the expression equal to 0
21(4x2−5x×10)×41(7x2−5x×12)=0
Multiply the terms
21(4x2−50x)×41(7x2−5x×12)=0
Multiply the terms
21(4x2−50x)×41(7x2−60x)=0
Multiply the terms
More Steps

Multiply the terms
21(4x2−50x)×41(7x2−60x)
Multiply the terms
More Steps

Evaluate
21×41
To multiply the fractions,multiply the numerators and denominators separately
2×41
Multiply the numbers
81
81(4x2−50x)(7x2−60x)
Multiply the first two terms
More Steps

Evaluate
81(4x2−50x)
Apply the distributive property
81×4x2−81×50x
Multiply the numbers
21x2−81×50x
Multiply the numbers
21x2−425x
(21x2−425x)(7x2−60x)
(21x2−425x)(7x2−60x)=0
Separate the equation into 2 possible cases
21x2−425x=07x2−60x=0
Solve the equation
More Steps

Evaluate
21x2−425x=0
Factor the expression
More Steps

Evaluate
21x2−425x
Rewrite the expression
41x×2x−41x×25
Factor out 41x from the expression
41x(2x−25)
41x(2x−25)=0
When the product of factors equals 0,at least one factor is 0
41x=02x−25=0
Solve the equation for x
x=02x−25=0
Solve the equation for x
More Steps

Evaluate
2x−25=0
Move the constant to the right-hand side and change its sign
2x=0+25
Removing 0 doesn't change the value,so remove it from the expression
2x=25
Divide both sides
22x=225
Divide the numbers
x=225
x=0x=225
x=0x=2257x2−60x=0
Solve the equation
More Steps

Evaluate
7x2−60x=0
Factor the expression
More Steps

Evaluate
7x2−60x
Rewrite the expression
x×7x−x×60
Factor out x from the expression
x(7x−60)
x(7x−60)=0
When the product of factors equals 0,at least one factor is 0
x=07x−60=0
Solve the equation for x
More Steps

Evaluate
7x−60=0
Move the constant to the right-hand side and change its sign
7x=0+60
Removing 0 doesn't change the value,so remove it from the expression
7x=60
Divide both sides
77x=760
Divide the numbers
x=760
x=0x=760
x=0x=225x=0x=760
Find the union
x=0x=225x=760
Solution
x1=0,x2=760,x3=225
Alternative Form
x1=0,x2=8.5˙71428˙,x3=12.5
Show Solution
