Question
Simplify the expression
−23c−23c2+23c3−245
Evaluate
21(3−c)2(3c−5)−10c(3−c)
Multiply the terms
More Steps

Multiply the terms
21(3−c)2(3c−5)
Multiply the terms
More Steps

Evaluate
21(3c−5)
Apply the distributive property
21×3c−21×5
Multiply the numbers
23c−21×5
Multiply the numbers
23c−25
(23c−25)(3−c)2
(23c−25)(3−c)2−10c(3−c)
Expand the expression
More Steps

Calculate
(23c−25)(3−c)2
Simplify
(23c−25)(9−6c+c2)
Apply the distributive property
23c×9−23c×6c+23c×c2−25×9−(−25×6c)−25c2
Multiply the numbers
More Steps

Evaluate
23×9
Multiply the numbers
23×9
Multiply the numbers
227
227c−23c×6c+23c×c2−25×9−(−25×6c)−25c2
Multiply the terms
More Steps

Evaluate
23c×6c
Multiply the numbers
9c×c
Multiply the terms
9c2
227c−9c2+23c×c2−25×9−(−25×6c)−25c2
Multiply the terms
More Steps

Evaluate
c×c2
Use the product rule an×am=an+m to simplify the expression
c1+2
Add the numbers
c3
227c−9c2+23c3−25×9−(−25×6c)−25c2
Multiply the numbers
More Steps

Evaluate
−25×9
Multiply the numbers
−25×9
Multiply the numbers
−245
227c−9c2+23c3−245−(−25×6c)−25c2
Multiply the numbers
More Steps

Evaluate
−25×6
Reduce the numbers
−5×3
Multiply the numbers
−15
227c−9c2+23c3−245−(−15c)−25c2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
227c−9c2+23c3−245+15c−25c2
Add the terms
More Steps

Evaluate
227c+15c
Collect like terms by calculating the sum or difference of their coefficients
(227+15)c
Add the numbers
257c
257c−9c2+23c3−245−25c2
Subtract the terms
More Steps

Evaluate
−9c2−25c2
Collect like terms by calculating the sum or difference of their coefficients
(−9−25)c2
Subtract the numbers
−223c2
257c−223c2+23c3−245
257c−223c2+23c3−245−10c(3−c)
Expand the expression
More Steps

Calculate
−10c(3−c)
Apply the distributive property
−10c×3−(−10c×c)
Multiply the numbers
−30c−(−10c×c)
Multiply the terms
−30c−(−10c2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−30c+10c2
257c−223c2+23c3−245−30c+10c2
Subtract the terms
More Steps

Evaluate
257c−30c
Collect like terms by calculating the sum or difference of their coefficients
(257−30)c
Subtract the numbers
More Steps

Evaluate
257−30
Reduce fractions to a common denominator
257−230×2
Write all numerators above the common denominator
257−30×2
Multiply the numbers
257−60
Subtract the numbers
2−3
Use b−a=−ba=−ba to rewrite the fraction
−23
−23c
−23c−223c2+23c3−245+10c2
Solution
More Steps

Evaluate
−223c2+10c2
Collect like terms by calculating the sum or difference of their coefficients
(−223+10)c2
Add the numbers
More Steps

Evaluate
−223+10
Reduce fractions to a common denominator
−223+210×2
Write all numerators above the common denominator
2−23+10×2
Multiply the numbers
2−23+20
Add the numbers
2−3
Use b−a=−ba=−ba to rewrite the fraction
−23
−23c2
−23c−23c2+23c3−245
Show Solution

Factor the expression
−23(2c+5+c2)(3−c)
Evaluate
21(3−c)2(3c−5)−10c(3−c)
Rewrite the expression
21(3−c)(3c−5)(3−c)−10c(3−c)
Factor out 3−c from the expression
(21(3−c)(3c−5)−10c)(3−c)
Solution
More Steps

Evaluate
21(3−c)(3c−5)−10c
Simplify
More Steps

Evaluate
21(3−c)(3c−5)
Simplify
(23−21c)(3c−5)
Apply the distributive property
23×3c+23(−5)−21c×3c−21c(−5)
Multiply the terms
29c+23(−5)−21c×3c−21c(−5)
Multiply the terms
29c−215−21c×3c−21c(−5)
Multiply the terms
29c−215−23c2−21c(−5)
Multiply the terms
29c−215−23c2+25c
29c−215−23c2+25c−10c
Calculate the sum or difference
More Steps

Evaluate
29c+25c−10c
Collect like terms by calculating the sum or difference of their coefficients
(29+25−10)c
Calculate the sum or difference
−3c
−3c−215−23c2
Factor the expression
−23(2c+5+c2)
−23(2c+5+c2)(3−c)
Show Solution

Find the roots
c1=−1−2i,c2=−1+2i,c3=3
Evaluate
21(3−c)2(3c−5)−10c(3−c)
To find the roots of the expression,set the expression equal to 0
21(3−c)2(3c−5)−10c(3−c)=0
Multiply the terms
More Steps

Multiply the terms
21(3−c)2(3c−5)
Multiply the terms
More Steps

Evaluate
21(3c−5)
Apply the distributive property
21×3c−21×5
Multiply the numbers
23c−21×5
Multiply the numbers
23c−25
(23c−25)(3−c)2
(23c−25)(3−c)2−10c(3−c)=0
Calculate
More Steps

Evaluate
(23c−25)(3−c)2−10c(3−c)
Expand the expression
More Steps

Calculate
(23c−25)(3−c)2
Simplify
(23c−25)(9−6c+c2)
Apply the distributive property
23c×9−23c×6c+23c×c2−25×9−(−25×6c)−25c2
Multiply the numbers
227c−23c×6c+23c×c2−25×9−(−25×6c)−25c2
Multiply the terms
227c−9c2+23c×c2−25×9−(−25×6c)−25c2
Multiply the terms
227c−9c2+23c3−25×9−(−25×6c)−25c2
Multiply the numbers
227c−9c2+23c3−245−(−25×6c)−25c2
Multiply the numbers
227c−9c2+23c3−245−(−15c)−25c2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
227c−9c2+23c3−245+15c−25c2
Add the terms
257c−9c2+23c3−245−25c2
Subtract the terms
257c−223c2+23c3−245
257c−223c2+23c3−245−10c(3−c)
Expand the expression
More Steps

Calculate
−10c(3−c)
Apply the distributive property
−10c×3−(−10c×c)
Multiply the numbers
−30c−(−10c×c)
Multiply the terms
−30c−(−10c2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−30c+10c2
257c−223c2+23c3−245−30c+10c2
Subtract the terms
More Steps

Evaluate
257c−30c
Collect like terms by calculating the sum or difference of their coefficients
(257−30)c
Subtract the numbers
−23c
−23c−223c2+23c3−245+10c2
Add the terms
More Steps

Evaluate
−223c2+10c2
Collect like terms by calculating the sum or difference of their coefficients
(−223+10)c2
Add the numbers
−23c2
−23c−23c2+23c3−245
−23c−23c2+23c3−245=0
Factor the expression
23(c−3)(2c+c2+5)=0
Divide both sides
(c−3)(2c+c2+5)=0
Separate the equation into 2 possible cases
c−3=02c+c2+5=0
Solve the equation
More Steps

Evaluate
c−3=0
Move the constant to the right-hand side and change its sign
c=0+3
Removing 0 doesn't change the value,so remove it from the expression
c=3
c=32c+c2+5=0
Solve the equation
More Steps

Evaluate
2c+c2+5=0
Rewrite in standard form
c2+2c+5=0
Substitute a=1,b=2 and c=5 into the quadratic formula c=2a−b±b2−4ac
c=2−2±22−4×5
Simplify the expression
More Steps

Evaluate
22−4×5
Multiply the numbers
22−20
Evaluate the power
4−20
Subtract the numbers
−16
c=2−2±−16
Simplify the radical expression
More Steps

Evaluate
−16
Evaluate the power
16×−1
Evaluate the power
16×i
Evaluate the square root
4i
c=2−2±4i
Separate the equation into 2 possible cases
c=2−2+4ic=2−2−4i
Simplify the expression
c=−1+2ic=2−2−4i
Simplify the expression
c=−1+2ic=−1−2i
c=3c=−1+2ic=−1−2i
Solution
c1=−1−2i,c2=−1+2i,c3=3
Show Solution
