Question
Simplify the expression
87x
Evaluate
21x−21(7x×8)21×27x×21(7x×8)−21
Multiply the terms
21x−21(56x)21×27x×21(7x×8)−21
Multiply the terms
21x−21(56x)21×27x×21(56x)−21
Multiply the terms
More Steps

Evaluate
21×27×21
Multiply the terms
More Steps

Evaluate
21×27
To multiply the fractions,multiply the numerators and denominators separately
2×27
Multiply the numbers
47
47×21
To multiply the fractions,multiply the numerators and denominators separately
4×27
Multiply the numbers
87
87x−21(56x)21x(56x)−21
Multiply the terms with the same base by adding their exponents
87x−21+1(56x)21(56x)−21
Add the numbers
More Steps

Evaluate
−21+1
Reduce fractions to a common denominator
−21+22
Write all numerators above the common denominator
2−1+2
Add the numbers
21
87x21(56x)21(56x)−21
Multiply the terms with the same base by adding their exponents
87x21(56x)21−21
Subtract the numbers
87x21(56x)0
Any non-zero expression raised to the power of 0 equals 1
87x21
Solution
87x
Show Solution

Find the roots
x∈∅
Evaluate
21x−21(7x×8)21×27x(21)(7x×8)−21
To find the roots of the expression,set the expression equal to 0
21x−21(7x×8)21×27x(21)(7x×8)−21=0
Find the domain
More Steps

Evaluate
⎩⎨⎧x>0x=07x×8≥07x×8>07x×8=0
Calculate
More Steps

Evaluate
7x×8≥0
Multiply the terms
56x≥0
Rewrite the expression
x≥0
⎩⎨⎧x>0x=0x≥07x×8>07x×8=0
Calculate
More Steps

Evaluate
7x×8>0
Multiply the terms
56x>0
Rewrite the expression
x>0
⎩⎨⎧x>0x=0x≥0x>07x×8=0
Calculate
More Steps

Evaluate
7x×8=0
Multiply the terms
56x=0
Rewrite the expression
x=0
⎩⎨⎧x>0x=0x≥0x>0x=0
Simplify
⎩⎨⎧x>0x=0x≥0
Find the intersection
x>0
21x−21(7x×8)21×27x(21)(7x×8)−21=0,x>0
Calculate
21x−21(7x×8)21×27x(21)(7x×8)−21=0
Multiply the terms
21x−21(56x)21×27x(21)(7x×8)−21=0
Multiply the terms
21x−21(56x)21×27x(21)(56x)−21=0
Remove the unnecessary parentheses
21x−21(56x)21×27x×21(56x)−21=0
Multiply
More Steps

Multiply the terms
21x−21(56x)21×27x×21(56x)−21
Multiply the terms
More Steps

Evaluate
21×27×21
Multiply the terms
47×21
To multiply the fractions,multiply the numerators and denominators separately
4×27
Multiply the numbers
87
87x−21(56x)21x(56x)−21
Multiply the terms with the same base by adding their exponents
87x−21+1(56x)21(56x)−21
Add the numbers
More Steps

Evaluate
−21+1
Reduce fractions to a common denominator
−21+22
Write all numerators above the common denominator
2−1+2
Add the numbers
21
87x21(56x)21(56x)−21
Multiply the terms with the same base by adding their exponents
87x21(56x)21−21
Subtract the numbers
87x21(56x)0
Any non-zero expression raised to the power of 0 equals 1
87x21
87x21=0
Rewrite the expression
x21=0
The only way a root could be 0 is when the radicand equals 0
x=0
Check if the solution is in the defined range
x=0,x>0
Solution
x∈∅
Show Solution
