Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
41x2=61(3x−2)
Multiply the terms
More Steps

Evaluate
61(3x−2)
Apply the distributive property
61×3x−61×2
Multiply the numbers
More Steps

Evaluate
61×3
Reduce the numbers
21×1
Multiply the numbers
21
21x−61×2
Multiply the numbers
More Steps

Evaluate
61×2
Reduce the numbers
31×1
Multiply the numbers
31
21x−31
41x2=21x−31
Move the expression to the left side
41x2−21x+31=0
Multiply both sides
12(41x2−21x+31)=12×0
Calculate
3x2−6x+4=0
Substitute a=3,b=−6 and c=4 into the quadratic formula x=2a−b±b2−4ac
x=2×36±(−6)2−4×3×4
Simplify the expression
x=66±(−6)2−4×3×4
Simplify the expression
More Steps

Evaluate
(−6)2−4×3×4
Multiply the terms
More Steps

Multiply the terms
4×3×4
Multiply the terms
12×4
Multiply the numbers
48
(−6)2−48
Rewrite the expression
62−48
Evaluate the power
36−48
Subtract the numbers
−12
x=66±−12
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=1−33i,x2=1+33i
Alternative Form
x1≈1−0.57735i,x2≈1+0.57735i
Evaluate
41x2=61(3x−2)
Multiply the terms
More Steps

Evaluate
61(3x−2)
Apply the distributive property
61×3x−61×2
Multiply the numbers
More Steps

Evaluate
61×3
Reduce the numbers
21×1
Multiply the numbers
21
21x−61×2
Multiply the numbers
More Steps

Evaluate
61×2
Reduce the numbers
31×1
Multiply the numbers
31
21x−31
41x2=21x−31
Move the expression to the left side
41x2−21x+31=0
Multiply both sides
12(41x2−21x+31)=12×0
Calculate
3x2−6x+4=0
Substitute a=3,b=−6 and c=4 into the quadratic formula x=2a−b±b2−4ac
x=2×36±(−6)2−4×3×4
Simplify the expression
x=66±(−6)2−4×3×4
Simplify the expression
More Steps

Evaluate
(−6)2−4×3×4
Multiply the terms
More Steps

Multiply the terms
4×3×4
Multiply the terms
12×4
Multiply the numbers
48
(−6)2−48
Rewrite the expression
62−48
Evaluate the power
36−48
Subtract the numbers
−12
x=66±−12
Simplify the radical expression
More Steps

Evaluate
−12
Evaluate the power
12×−1
Evaluate the power
12×i
Evaluate the power
More Steps

Evaluate
12
Write the expression as a product where the root of one of the factors can be evaluated
4×3
Write the number in exponential form with the base of 2
22×3
The root of a product is equal to the product of the roots of each factor
22×3
Reduce the index of the radical and exponent with 2
23
23×i
x=66±23×i
Separate the equation into 2 possible cases
x=66+23×ix=66−23×i
Simplify the expression
More Steps

Evaluate
x=66+23×i
Divide the terms
More Steps

Evaluate
66+23×i
Rewrite the expression
62(3+3×i)
Cancel out the common factor 2
33+3×i
Simplify
1+33i
x=1+33i
x=1+33ix=66−23×i
Simplify the expression
More Steps

Evaluate
x=66−23×i
Divide the terms
More Steps

Evaluate
66−23×i
Rewrite the expression
62(3−3×i)
Cancel out the common factor 2
33−3×i
Simplify
1−33i
x=1−33i
x=1+33ix=1−33i
Solution
x1=1−33i,x2=1+33i
Alternative Form
x1≈1−0.57735i,x2≈1+0.57735i
Show Solution
