Question
Solve the equation
x=24+log3(23)
Alternative Form
x≈3.427025
Evaluate
71×3x×121×3x=1423×35
Simplify
More Steps

Evaluate
71×3x×121×3x
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
121
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
22+1
Add the terms
23
71×3x×23×3x
Multiply the terms
More Steps

Evaluate
71×23
To multiply the fractions,multiply the numerators and denominators separately
7×23
Multiply the numbers
143
143×3x×3x
Multiply the terms with the same base by adding their exponents
143×3x+x
Add the terms
More Steps

Evaluate
x+x
Collect like terms by calculating the sum or difference of their coefficients
(1+1)x
Add the numbers
2x
143×32x
Multiply the terms
143×32x
Multiply the terms
1432x+1
1432x+1=1423×35
Multiply the numbers
More Steps

Evaluate
1423×35
Multiply the numbers
1423×35
Multiply the numbers
More Steps

Evaluate
23×35
Evaluate the power
23×243
Multiply the numbers
5589
145589
1432x+1=145589
Multiply both sides of the equation by 14
1432x+1×14=145589×14
Multiply the terms
32x+1=5589
Take the logarithm of both sides
log3(32x+1)=log3(5589)
Evaluate the logarithm
2x+1=log3(5589)
Move the constant to the right-hand side and change its sign
2x=log3(5589)−1
Divide both sides
22x=2log3(5589)−1
Divide the numbers
x=2log3(5589)−1
Solution
More Steps

Evaluate
log3(5589)−1
Simplify
More Steps

Evaluate
log3(5589)
Use loga(x×y)=loga(x)+loga(y) to transform the expression
log3(243)+log3(23)
Simplify the expression
5+log3(23)
5+log3(23)−1
Calculate
4+log3(23)
x=24+log3(23)
Alternative Form
x≈3.427025
Show Solution
