Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=31−35,x2=31+35
Alternative Form
x1≈−1.902735,x2≈2.569401
Evaluate
91(x−31)2=95
Expand the expression
More Steps

Evaluate
91(x−31)2
Expand the expression
More Steps

Evaluate
(x−31)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×31+(31)2
Calculate
x2−32x+91
91(x2−32x+91)
Apply the distributive property
91x2−91×32x+91×91
Multiply the numbers
More Steps

Evaluate
91×32
To multiply the fractions,multiply the numerators and denominators separately
9×32
Multiply the numbers
272
91x2−272x+91×91
Multiply the numbers
More Steps

Evaluate
91×91
To multiply the fractions,multiply the numerators and denominators separately
9×91
Multiply the numbers
811
91x2−272x+811
91x2−272x+811=95
Move the expression to the left side
91x2−272x−8144=0
Multiply both sides
81(91x2−272x−8144)=81×0
Calculate
9x2−6x−44=0
Substitute a=9,b=−6 and c=−44 into the quadratic formula x=2a−b±b2−4ac
x=2×96±(−6)2−4×9(−44)
Simplify the expression
x=186±(−6)2−4×9(−44)
Simplify the expression
More Steps

Evaluate
(−6)2−4×9(−44)
Multiply
More Steps

Multiply the terms
4×9(−44)
Rewrite the expression
−4×9×44
Multiply the terms
−1584
(−6)2−(−1584)
Rewrite the expression
62−(−1584)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
62+1584
Evaluate the power
36+1584
Add the numbers
1620
x=186±1620
Simplify the radical expression
More Steps

Evaluate
1620
Write the expression as a product where the root of one of the factors can be evaluated
324×5
Write the number in exponential form with the base of 18
182×5
The root of a product is equal to the product of the roots of each factor
182×5
Reduce the index of the radical and exponent with 2
185
x=186±185
Separate the equation into 2 possible cases
x=186+185x=186−185
Simplify the expression
More Steps

Evaluate
x=186+185
Divide the terms
More Steps

Evaluate
186+185
Rewrite the expression
186(1+35)
Cancel out the common factor 6
31+35
x=31+35
x=31+35x=186−185
Simplify the expression
More Steps

Evaluate
x=186−185
Divide the terms
More Steps

Evaluate
186−185
Rewrite the expression
186(1−35)
Cancel out the common factor 6
31−35
x=31−35
x=31+35x=31−35
Solution
x1=31−35,x2=31+35
Alternative Form
x1≈−1.902735,x2≈2.569401
Show Solution
