Question
Simplify the expression
−tan(a)sin(a)−tan(a)
Evaluate
sec(a)1−tan(a)−cos(a)1
Subtract the terms
More Steps

Evaluate
sec(a)1−cos(a)1
Reduce fractions to a common denominator
sec(a)cos(a)cos(a)−cos(a)sec(a)sec(a)
Rewrite the expression
sec(a)cos(a)cos(a)−sec(a)cos(a)sec(a)
Write all numerators above the common denominator
sec(a)cos(a)cos(a)−sec(a)
sec(a)cos(a)cos(a)−sec(a)−tan(a)
Reduce fractions to a common denominator
sec(a)cos(a)cos(a)−sec(a)−sec(a)cos(a)tan(a)sec(a)cos(a)
Write all numerators above the common denominator
sec(a)cos(a)cos(a)−sec(a)−tan(a)sec(a)cos(a)
Transform the expression
More Steps

Evaluate
cos(a)−sec(a)−tan(a)sec(a)cos(a)
Use sect=cost1 to transform the expression
cos(a)−cos(a)1−tan(a)sec(a)cos(a)
Transform the expression
More Steps

Evaluate
−tan(a)sec(a)cos(a)
Use sect=cost1 to transform the expression
−tan(a)×cos(a)1×cos(a)
Multiply the terms
−tan(a)cos(a)×cos(a)1
Multiply the terms
−tan(a)
cos(a)−cos(a)1−tan(a)
Subtract the terms
More Steps

Evaluate
cos(a)−cos(a)1
Reduce fractions to a common denominator
cos(a)cos(a)cos(a)−cos(a)1
Write all numerators above the common denominator
cos(a)cos(a)cos(a)−1
Multiply the terms
cos(a)cos2(a)−1
cos(a)cos2(a)−1−tan(a)
Reduce fractions to a common denominator
cos(a)cos2(a)−1−cos(a)tan(a)cos(a)
Write all numerators above the common denominator
cos(a)cos2(a)−1−tan(a)cos(a)
sec(a)cos(a)cos(a)cos2(a)−1−tan(a)cos(a)
Transform the expression
More Steps

Evaluate
sec(a)cos(a)
Use sect=cost1 to transform the expression
cos(a)1×cos(a)
Cancel out the common factor cos(a)
1×1
Multiply the terms
1
1cos(a)cos2(a)−1−tan(a)cos(a)
Divide the terms
cos(a)cos2(a)−1−tan(a)cos(a)
Transform the expression
More Steps

Evaluate
−tan(a)cos(a)
Use tant=costsint to transform the expression
−cos(a)sin(a)×cos(a)
Cancel out the common factor cos(a)
−sin(a)×1
Multiply the terms
−sin(a)
cos(a)cos2(a)−1−sin(a)
Transform the expression
More Steps

Evaluate
cos2(a)−1−sin(a)
Use cos2t=1−sin2t to transform the expression
1−sin2(a)−1−sin(a)
Since two opposites add up to 0,remove them form the expression
−sin2(a)−sin(a)
cos(a)−sin2(a)−sin(a)
Use b−a=−ba=−ba to rewrite the fraction
−cos(a)sin2(a)+sin(a)
Transform the expression
−cos(a)sin(a)(sin(a)+1)
Use cos(t)sin(t)=tan(t) to transform the expression
−(sin(a)+1)tan(a)
Calculate
(−sin(a)−1)tan(a)
Solution
−tan(a)sin(a)−tan(a)
Show Solution
