Question
Simplify the expression
47x
Evaluate
x−211×(7x×8)21×27×21(7x×8)−21
Multiply the terms
x−211×(56x)21×27×21(7x×8)−21
Multiply the terms
x−211×(56x)21×27×21(56x)−21
Rewrite the expression
More Steps

Evaluate
x−211
Express with a positive exponent using a−n=an1
x2111
Simplify
x21
x21(56x)21×27×21(56x)−21
Multiply the terms with the same base by adding their exponents
x21(56x)21−21×27×21
Subtract the numbers
x21(56x)0×27×21
Any non-zero expression raised to the power of 0 equals 1
x21×27×21
Multiply the terms
More Steps

Evaluate
27×21
To multiply the fractions,multiply the numerators and denominators separately
2×27
Multiply the numbers
47
x21×47
Use the commutative property to reorder the terms
47x21
Solution
47x
Show Solution

Find the roots
x∈∅
Evaluate
x−211×(7x×8)21(27)(21)(7x×8)−21
To find the roots of the expression,set the expression equal to 0
x−211×(7x×8)21(27)(21)(7x×8)−21=0
Find the domain
More Steps

Evaluate
⎩⎨⎧x>0x=0x−21=07x×8≥07x×8>07x×8=0
Calculate
More Steps

Evaluate
x−21=0
Rearrange the terms
x211=0
Calculate
{1=0x21=0
The statement is true for any value of x
{x∈Rx21=0
Calculate
{x∈Rx=0
Find the intersection
x=0
⎩⎨⎧x>0x=0x=07x×8≥07x×8>07x×8=0
Calculate
More Steps

Evaluate
7x×8≥0
Multiply the terms
56x≥0
Rewrite the expression
x≥0
⎩⎨⎧x>0x=0x=0x≥07x×8>07x×8=0
Calculate
More Steps

Evaluate
7x×8>0
Multiply the terms
56x>0
Rewrite the expression
x>0
⎩⎨⎧x>0x=0x=0x≥0x>07x×8=0
Calculate
More Steps

Evaluate
7x×8=0
Multiply the terms
56x=0
Rewrite the expression
x=0
⎩⎨⎧x>0x=0x=0x≥0x>0x=0
Simplify
⎩⎨⎧x>0x=0x≥0
Find the intersection
x>0
x−211×(7x×8)21(27)(21)(7x×8)−21=0,x>0
Calculate
x−211×(7x×8)21(27)(21)(7x×8)−21=0
Multiply the terms
x−211×(56x)21(27)(21)(7x×8)−21=0
Multiply the terms
x−211×(56x)21(27)(21)(56x)−21=0
Remove the unnecessary parentheses
x−211×(56x)21×27(21)(56x)−21=0
Remove the unnecessary parentheses
x−211×(56x)21×27×21(56x)−21=0
Divide the terms
More Steps

Evaluate
x−211
Express with a positive exponent using a−n=an1
x2111
Multiply by the reciprocal
1×x21
Any expression multiplied by 1 remains the same
x21
x21(56x)21×27×21(56x)−21=0
Multiply
More Steps

Multiply the terms
x21(56x)21×27×21(56x)−21
Multiply the terms with the same base by adding their exponents
x21(56x)21−21×27×21
Subtract the numbers
x21(56x)0×27×21
Any non-zero expression raised to the power of 0 equals 1
x21×27×21
Multiply the terms
More Steps

Evaluate
27×21
To multiply the fractions,multiply the numerators and denominators separately
2×27
Multiply the numbers
47
x21×47
Use the commutative property to reorder the terms
47x21
47x21=0
Rewrite the expression
x21=0
The only way a root could be 0 is when the radicand equals 0
x=0
Check if the solution is in the defined range
x=0,x>0
Solution
x∈∅
Show Solution
