Question
Simplify the expression
−15353464040×2050669849b1
Evaluate
1÷(−15353464040)÷2050669849b
Divide the terms
More Steps

Evaluate
1÷(−15353464040)
Rewrite the expression
−153534640401
Use b−a=−ba=−ba to rewrite the fraction
−153534640401
(−153534640401)÷2050669849b
Multiply by the reciprocal
−153534640401×2050669849b1
Solution
−15353464040×2050669849b1
Show Solution

Find the excluded values
b=0
Evaluate
1÷(−15353464040)÷(2050669849b)
To find the excluded values,set the denominators equal to 0
2050669849b=0
Solution
b=0
Show Solution

Find the roots
b∈∅
Evaluate
1÷(−15353464040)÷(2050669849b)
To find the roots of the expression,set the expression equal to 0
1÷(−15353464040)÷(2050669849b)=0
Find the domain
1÷(−15353464040)÷(2050669849b)=0,b=0
Calculate
1÷(−15353464040)÷(2050669849b)=0
Multiply the terms
1÷(−15353464040)÷2050669849b=0
Divide the terms
More Steps

Evaluate
1÷(−15353464040)
Rewrite the expression
−153534640401
Use b−a=−ba=−ba to rewrite the fraction
−153534640401
(−153534640401)÷2050669849b=0
Divide the terms
More Steps

Evaluate
(−153534640401)÷2050669849b
Multiply by the reciprocal
−153534640401×2050669849b1
Multiply the terms
−15353464040×2050669849b1
−15353464040×2050669849b1=0
Rewrite the expression
15353464040×2050669849b−1=0
Cross multiply
−1=15353464040×2050669849b×0
Simplify the equation
−1=0
Solution
b∈∅
Show Solution
