Question
Simplify the expression
−6x3−15x7+8x2+20x6
Evaluate
1×(3x−4)(−2x2−5x6)
Multiply the terms
(3x−4)(−2x2−5x6)
Apply the distributive property
3x(−2x2)−3x×5x6−4(−2x2)−(−4×5x6)
Multiply the terms
More Steps

Evaluate
3x(−2x2)
Multiply the numbers
More Steps

Evaluate
3(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−3×2
Multiply the numbers
−6
−6x×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
−6x3
−6x3−3x×5x6−4(−2x2)−(−4×5x6)
Multiply the terms
More Steps

Evaluate
3x×5x6
Multiply the numbers
15x×x6
Multiply the terms
More Steps

Evaluate
x×x6
Use the product rule an×am=an+m to simplify the expression
x1+6
Add the numbers
x7
15x7
−6x3−15x7−4(−2x2)−(−4×5x6)
Multiply the numbers
More Steps

Evaluate
−4(−2)
Multiplying or dividing an even number of negative terms equals a positive
4×2
Multiply the numbers
8
−6x3−15x7+8x2−(−4×5x6)
Multiply the numbers
−6x3−15x7+8x2−(−20x6)
Solution
−6x3−15x7+8x2+20x6
Show Solution

Factor the expression
−x2(3x−4)(2+5x4)
Evaluate
1×(3x−4)(−2x2−5x6)
Multiply the terms
(3x−4)(−2x2−5x6)
Factor the expression
More Steps

Evaluate
−2x2−5x6
Rewrite the expression
−x2×2−x2×5x4
Factor out −x2 from the expression
−x2(2+5x4)
(3x−4)(−x2)(2+5x4)
Solution
−x2(3x−4)(2+5x4)
Show Solution

Find the roots
x1=−1041000−1041000i,x2=1041000+1041000i,x3=0,x4=34
Alternative Form
x1≈−0.562341−0.562341i,x2≈0.562341+0.562341i,x3=0,x4=1.3˙
Evaluate
1×(3x−4)(−2x2−5x6)
To find the roots of the expression,set the expression equal to 0
1×(3x−4)(−2x2−5x6)=0
Multiply the terms
(3x−4)(−2x2−5x6)=0
Separate the equation into 2 possible cases
3x−4=0−2x2−5x6=0
Solve the equation
More Steps

Evaluate
3x−4=0
Move the constant to the right-hand side and change its sign
3x=0+4
Removing 0 doesn't change the value,so remove it from the expression
3x=4
Divide both sides
33x=34
Divide the numbers
x=34
x=34−2x2−5x6=0
Solve the equation
More Steps

Evaluate
−2x2−5x6=0
Factor the expression
−x2(2+5x4)=0
Divide both sides
x2(2+5x4)=0
Separate the equation into 2 possible cases
x2=02+5x4=0
The only way a power can be 0 is when the base equals 0
x=02+5x4=0
Solve the equation
More Steps

Evaluate
2+5x4=0
Move the constant to the right-hand side and change its sign
5x4=0−2
Removing 0 doesn't change the value,so remove it from the expression
5x4=−2
Divide both sides
55x4=5−2
Divide the numbers
x4=5−2
Use b−a=−ba=−ba to rewrite the fraction
x4=−52
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4−52
Simplify the expression
x=±(1041000+1041000i)
Separate the equation into 2 possible cases
x=1041000+1041000ix=−1041000−1041000i
x=0x=1041000+1041000ix=−1041000−1041000i
x=34x=0x=1041000+1041000ix=−1041000−1041000i
Solution
x1=−1041000−1041000i,x2=1041000+1041000i,x3=0,x4=34
Alternative Form
x1≈−0.562341−0.562341i,x2≈0.562341+0.562341i,x3=0,x4=1.3˙
Show Solution
