Question
Simplify the expression
−2535−4698o2
Evaluate
1−81o×58o−2536
Multiply
More Steps

Multiply the terms
−81o×58o
Multiply the terms
−4698o×o
Multiply the terms
−4698o2
1−4698o2−2536
Solution
−2535−4698o2
Show Solution

Factor the expression
−3(845+1566o2)
Evaluate
1−81o×58o−2536
Multiply
More Steps

Multiply the terms
81o×58o
Multiply the terms
4698o×o
Multiply the terms
4698o2
1−4698o2−2536
Subtract the numbers
−2535−4698o2
Solution
−3(845+1566o2)
Show Solution

Find the roots
o1=−52213870i,o2=52213870i
Alternative Form
o1≈−0.734569i,o2≈0.734569i
Evaluate
1−(81o)×58o−2536
To find the roots of the expression,set the expression equal to 0
1−(81o)×58o−2536=0
Multiply the terms
1−81o×58o−2536=0
Multiply
More Steps

Multiply the terms
81o×58o
Multiply the terms
4698o×o
Multiply the terms
4698o2
1−4698o2−2536=0
Subtract the numbers
−2535−4698o2=0
Move the constant to the right-hand side and change its sign
−4698o2=0+2535
Removing 0 doesn't change the value,so remove it from the expression
−4698o2=2535
Change the signs on both sides of the equation
4698o2=−2535
Divide both sides
46984698o2=4698−2535
Divide the numbers
o2=4698−2535
Divide the numbers
More Steps

Evaluate
4698−2535
Cancel out the common factor 3
1566−845
Use b−a=−ba=−ba to rewrite the fraction
−1566845
o2=−1566845
Take the root of both sides of the equation and remember to use both positive and negative roots
o=±−1566845
Simplify the expression
More Steps

Evaluate
−1566845
Evaluate the power
1566845×−1
Evaluate the power
1566845×i
Evaluate the power
More Steps

Evaluate
1566845
To take a root of a fraction,take the root of the numerator and denominator separately
1566845
Simplify the radical expression
1566135
Simplify the radical expression
3174135
Multiply by the Conjugate
3174×174135×174
Multiply the numbers
3174×17413870
Multiply the numbers
52213870
52213870i
o=±52213870i
Separate the equation into 2 possible cases
o=52213870io=−52213870i
Solution
o1=−52213870i,o2=52213870i
Alternative Form
o1≈−0.734569i,o2≈0.734569i
Show Solution
