Question
Simplify the expression
−4318−4712o6
Evaluate
1−8o6×589−4319
Multiply the numbers
1−4712o6−4319
Solution
−4318−4712o6
Show Solution

Factor the expression
−2(2159+2356o6)
Evaluate
1−8o6×589−4319
Multiply the numbers
More Steps

Evaluate
8×589
Multiply the numbers
4712
Evaluate
4712o6
1−4712o6−4319
Subtract the numbers
−4318−4712o6
Solution
−2(2159+2356o6)
Show Solution

Find the roots
o1=−4712658293×23565−471262159×23565i,o2=4712658293×23565+471262159×23565i
Alternative Form
o1≈−0.853513−0.492776i,o2≈0.853513+0.492776i
Evaluate
1−(8o6)×589−4319
To find the roots of the expression,set the expression equal to 0
1−(8o6)×589−4319=0
Multiply the terms
1−8o6×589−4319=0
Multiply the numbers
1−4712o6−4319=0
Subtract the numbers
−4318−4712o6=0
Move the constant to the right-hand side and change its sign
−4712o6=0+4318
Removing 0 doesn't change the value,so remove it from the expression
−4712o6=4318
Change the signs on both sides of the equation
4712o6=−4318
Divide both sides
47124712o6=4712−4318
Divide the numbers
o6=4712−4318
Divide the numbers
More Steps

Evaluate
4712−4318
Cancel out the common factor 2
2356−2159
Use b−a=−ba=−ba to rewrite the fraction
−23562159
o6=−23562159
Take the root of both sides of the equation and remember to use both positive and negative roots
o=±6−23562159
Simplify the expression
More Steps

Evaluate
6−23562159
To take a root of a fraction,take the root of the numerator and denominator separately
623566−2159
Simplify the radical expression
More Steps

Evaluate
6−2159
Rewrite the expression
62159×(23+21i)
Apply the distributive property
62159×23+62159×21i
Multiply the numbers
2658293+62159×21i
Multiply the numbers
2658293+262159i
623562658293+262159i
Simplify
262356658293+26235662159i
Rearrange the numbers
More Steps

Evaluate
262356658293
Multiply by the Conjugate
262356×623565658293×623565
The product of roots with the same index is equal to the root of the product
262356×623565658293×23565
Multiply the numbers
4712658293×23565
4712658293×23565+26235662159i
Rearrange the numbers
More Steps

Evaluate
26235662159
Multiply by the Conjugate
262356×62356562159×623565
The product of roots with the same index is equal to the root of the product
262356×62356562159×23565
Multiply the numbers
471262159×23565
4712658293×23565+471262159×23565i
o=±(4712658293×23565+471262159×23565i)
Separate the equation into 2 possible cases
o=4712658293×23565+471262159×23565io=−4712658293×23565−471262159×23565i
Solution
o1=−4712658293×23565−471262159×23565i,o2=4712658293×23565+471262159×23565i
Alternative Form
o1≈−0.853513−0.492776i,o2≈0.853513+0.492776i
Show Solution
