Question
Simplify the expression
−11−m2−m
Evaluate
1−12−m×m−m
Multiply the terms
1−12−m2−m
Solution
−11−m2−m
Show Solution

Find the roots
m1=−21−243i,m2=−21+243i
Alternative Form
m1≈−0.5−3.278719i,m2≈−0.5+3.278719i
Evaluate
1−12−m×m−m
To find the roots of the expression,set the expression equal to 0
1−12−m×m−m=0
Multiply the terms
1−12−m2−m=0
Subtract the numbers
−11−m2−m=0
Rewrite in standard form
−m2−m−11=0
Multiply both sides
m2+m+11=0
Substitute a=1,b=1 and c=11 into the quadratic formula m=2a−b±b2−4ac
m=2−1±12−4×11
Simplify the expression
More Steps

Evaluate
12−4×11
1 raised to any power equals to 1
1−4×11
Multiply the numbers
1−44
Subtract the numbers
−43
m=2−1±−43
Simplify the radical expression
More Steps

Evaluate
−43
Evaluate the power
43×−1
Evaluate the power
43×i
m=2−1±43×i
Separate the equation into 2 possible cases
m=2−1+43×im=2−1−43×i
Simplify the expression
More Steps

Evaluate
m=2−1+43×i
Divide the terms
More Steps

Evaluate
2−1+43×i
Use b−a=−ba=−ba to rewrite the fraction
−21−43×i
Simplify
−21+243i
m=−21+243i
m=−21+243im=2−1−43×i
Simplify the expression
More Steps

Evaluate
m=2−1−43×i
Divide the terms
More Steps

Evaluate
2−1−43×i
Use b−a=−ba=−ba to rewrite the fraction
−21+43×i
Simplify
−21−243i
m=−21−243i
m=−21+243im=−21−243i
Solution
m1=−21−243i,m2=−21+243i
Alternative Form
m1≈−0.5−3.278719i,m2≈−0.5+3.278719i
Show Solution
