Question
Simplify the expression
−10121505−p
Evaluate
1−p−20245034
Cancel out the common factor 2
1−p−10122517
Solution
More Steps

Evaluate
1−10122517
Reduce fractions to a common denominator
10121012−10122517
Write all numerators above the common denominator
10121012−2517
Subtract the numbers
1012−1505
Use b−a=−ba=−ba to rewrite the fraction
−10121505
−10121505−p
Show Solution

Factor the expression
−10121(1505+1012p)
Evaluate
1−p−20245034
Cancel out the common factor 2
1−p−10122517
Subtract the numbers
More Steps

Evaluate
1−10122517
Reduce fractions to a common denominator
10121012−10122517
Write all numerators above the common denominator
10121012−2517
Subtract the numbers
1012−1505
Use b−a=−ba=−ba to rewrite the fraction
−10121505
−10121505−p
Solution
−10121(1505+1012p)
Show Solution

Find the roots
p=−10121505
Alternative Form
p≈−1.487154
Evaluate
1−p−20245034
To find the roots of the expression,set the expression equal to 0
1−p−20245034=0
Cancel out the common factor 2
1−p−10122517=0
Subtract the numbers
More Steps

Simplify
1−p−10122517
Subtract the numbers
More Steps

Evaluate
1−10122517
Reduce fractions to a common denominator
10121012−10122517
Write all numerators above the common denominator
10121012−2517
Subtract the numbers
1012−1505
Use b−a=−ba=−ba to rewrite the fraction
−10121505
−10121505−p
−10121505−p=0
Move the constant to the right-hand side and change its sign
−p=0+10121505
Add the terms
−p=10121505
Solution
p=−10121505
Alternative Form
p≈−1.487154
Show Solution
