Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=61−41,x2=61+41
Alternative Form
x1≈−0.900521,x2≈1.233854
Evaluate
10−6x−9x2=−9x
Move the expression to the left side
10+3x−9x2=0
Rewrite in standard form
−9x2+3x+10=0
Multiply both sides
9x2−3x−10=0
Substitute a=9,b=−3 and c=−10 into the quadratic formula x=2a−b±b2−4ac
x=2×93±(−3)2−4×9(−10)
Simplify the expression
x=183±(−3)2−4×9(−10)
Simplify the expression
More Steps

Evaluate
(−3)2−4×9(−10)
Multiply
More Steps

Multiply the terms
4×9(−10)
Any expression multiplied by 1 remains the same
−4×9×10
Multiply the terms
−36×10
Multiply the numbers
−360
(−3)2−(−360)
Rewrite the expression
32−(−360)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+360
Evaluate the power
9+360
Add the numbers
369
x=183±369
Simplify the radical expression
More Steps

Evaluate
369
Write the expression as a product where the root of one of the factors can be evaluated
9×41
Write the number in exponential form with the base of 3
32×41
The root of a product is equal to the product of the roots of each factor
32×41
Reduce the index of the radical and exponent with 2
341
x=183±341
Separate the equation into 2 possible cases
x=183+341x=183−341
Simplify the expression
More Steps

Evaluate
x=183+341
Divide the terms
More Steps

Evaluate
183+341
Rewrite the expression
183(1+41)
Cancel out the common factor 3
61+41
x=61+41
x=61+41x=183−341
Simplify the expression
More Steps

Evaluate
x=183−341
Divide the terms
More Steps

Evaluate
183−341
Rewrite the expression
183(1−41)
Cancel out the common factor 3
61−41
x=61−41
x=61+41x=61−41
Solution
x1=61−41,x2=61+41
Alternative Form
x1≈−0.900521,x2≈1.233854
Show Solution
