Question
Simplify the expression
s100
Evaluate
10×s(s×1)s×10
Remove the parentheses
10×s×s×1s×10
Reduce the fraction
More Steps

Evaluate
s×s×1s×10
Any expression multiplied by 1 remains the same
s×ss×10
Multiply the terms
s2s×10
Reduce the fraction
More Steps

Calculate
s2s
Use the product rule aman=an−m to simplify the expression
s2−11
Subtract the terms
s11
Simplify
s1
s10
10×s10
Multiply the terms
s10×10
Solution
s100
Show Solution

Find the excluded values
s=0
Evaluate
(10×s(s×1)s×10)
To find the excluded values,set the denominators equal to 0
s(s×1)=0
Remove the parentheses
s×s×1=0
Multiply the terms
More Steps

Evaluate
s×s×1
Rewrite the expression
s×s
Multiply the terms
s2
s2=0
Solution
s=0
Show Solution

Find the roots
s∈∅
Evaluate
(10×s(s×1)s×10)
To find the roots of the expression,set the expression equal to 0
10×s(s×1)s×10=0
Find the domain
More Steps

Evaluate
{s×s×1=0s(s×1)=0
Calculate
More Steps

Evaluate
s×s×1=0
Multiply the terms
s2=0
The only way a power can not be 0 is when the base not equals 0
s=0
{s=0s(s×1)=0
Calculate
More Steps

Evaluate
s(s×1)=0
Remove the parentheses
s×s×1=0
Multiply the terms
s2=0
The only way a power can not be 0 is when the base not equals 0
s=0
{s=0s=0
Find the intersection
s=0
10×s(s×1)s×10=0,s=0
Calculate
10×s(s×1)s×10=0
Any expression multiplied by 1 remains the same
10×s×ss×10=0
Use the commutative property to reorder the terms
10×s×s10s=0
Multiply the terms
10×s210s=0
Divide the terms
More Steps

Evaluate
s210s
Use the product rule aman=an−m to simplify the expression
s2−110
Reduce the fraction
s10
10×s10=0
Multiply the terms
More Steps

Multiply the terms
10×s10
Multiply the terms
s10×10
Multiply the terms
s100
s100=0
Cross multiply
100=s×0
Simplify the equation
100=0
Solution
s∈∅
Show Solution
