Question
100((x×1001)2−1001×1009)
Simplify the expression
1001x2−1009
Evaluate
100((x×1001)2−1001×1009)
Use the commutative property to reorder the terms
100((1001x)2−1001×1009)
Multiply the numbers
More Steps

Evaluate
1001×1009
To multiply the fractions,multiply the numerators and denominators separately
100×1009
Multiply the numbers
100009
100((1001x)2−100009)
Rewrite the expression
100(100001x2−100009)
Apply the distributive property
100×100001x2−100×100009
Multiply the numbers
More Steps

Evaluate
100×100001
Reduce the numbers
1×1001
Multiply the numbers
1001
1001x2−100×100009
Solution
More Steps

Evaluate
100×100009
Reduce the numbers
1×1009
Multiply the numbers
1009
1001x2−1009
Show Solution

Factor the expression
1001(x−3)(x+3)
Evaluate
100((x×1001)2−1001×1009)
Use the commutative property to reorder the terms
100((1001x)2−1001×1009)
Multiply the numbers
More Steps

Evaluate
1001×1009
To multiply the fractions,multiply the numerators and denominators separately
100×1009
Multiply the numbers
100009
100((1001x)2−100009)
Multiply the terms
More Steps

Evaluate
((1001x)2−100009)×100
Rewrite the expression
100((1001x)2−100009)
Simplify
100(100001x2−100009)
100(100001x2−100009)
Use a2−b2=(a−b)(a+b) to factor the expression
100×100001(x−3)(x+3)
Solution
1001(x−3)(x+3)
Show Solution

Find the roots
x1=−3,x2=3
Evaluate
100((x×1001)2−1001×1009)
To find the roots of the expression,set the expression equal to 0
100((x×1001)2−1001×1009)=0
Use the commutative property to reorder the terms
100((1001x)2−1001×1009)=0
Multiply the numbers
More Steps

Evaluate
1001×1009
To multiply the fractions,multiply the numerators and denominators separately
100×1009
Multiply the numbers
100009
100((1001x)2−100009)=0
Rewrite the expression
100(100001x2−100009)=0
Multiply the terms
More Steps

Evaluate
100(100001x2−100009)
Apply the distributive property
100×100001x2−100×100009
Multiply the numbers
More Steps

Evaluate
100×100001
Reduce the numbers
1×1001
Multiply the numbers
1001
1001x2−100×100009
Multiply the numbers
More Steps

Evaluate
100×100009
Reduce the numbers
1×1009
Multiply the numbers
1009
1001x2−1009
1001x2−1009=0
Move the constant to the right-hand side and change its sign
1001x2=0+1009
Add the terms
1001x2=1009
Multiply by the reciprocal
1001x2×100=1009×100
Multiply
x2=1009×100
Multiply
More Steps

Evaluate
1009×100
Reduce the numbers
9×1
Simplify
9
x2=9
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±9
Simplify the expression
More Steps

Evaluate
9
Write the number in exponential form with the base of 3
32
Reduce the index of the radical and exponent with 2
3
x=±3
Separate the equation into 2 possible cases
x=3x=−3
Solution
x1=−3,x2=3
Show Solution
