Question
Simplify the expression
252500−v
Evaluate
100−(120×50v)÷160
Multiply by the reciprocal
100−(120×50v)×601
Multiply the terms
More Steps

Multiply the terms
120×50v
Cancel out the common factor 10
12×5v
Multiply the terms
512v
100−512v×601
Multiply the terms
More Steps

Evaluate
512v×601
Cancel out the common factor 12
5v×51
Multiply the terms
5×5v
Multiply the terms
25v
100−25v
Reduce fractions to a common denominator
25100×25−25v
Write all numerators above the common denominator
25100×25−v
Solution
252500−v
Show Solution

Find the roots
v=2500
Evaluate
100−(120×50v)÷160
To find the roots of the expression,set the expression equal to 0
100−(120×50v)÷160=0
Multiply the terms
More Steps

Multiply the terms
120×50v
Cancel out the common factor 10
12×5v
Multiply the terms
512v
100−512v÷160=0
Divide the terms
100−512v÷60=0
Divide the terms
More Steps

Evaluate
512v÷60
Multiply by the reciprocal
512v×601
Cancel out the common factor 12
5v×51
Multiply the terms
5×5v
Multiply the terms
25v
100−25v=0
Subtract the terms
More Steps

Simplify
100−25v
Reduce fractions to a common denominator
25100×25−25v
Write all numerators above the common denominator
25100×25−v
Multiply the numbers
252500−v
252500−v=0
Simplify
2500−v=0
Move the constant to the right side
−v=0−2500
Removing 0 doesn't change the value,so remove it from the expression
−v=−2500
Solution
v=2500
Show Solution
