Question
Simplify the expression
−22860−2r4
Evaluate
100−22960−1×r4×2
Use the commutative property to reorder the terms
100−22960−2r4
Solution
−22860−2r4
Show Solution

Factor the expression
−2(11430+r4)
Evaluate
100−22960−1×r4×2
Multiply the terms
More Steps

Multiply the terms
1×r4×2
Rewrite the expression
r4×2
Use the commutative property to reorder the terms
2r4
100−22960−2r4
Subtract the numbers
−22860−2r4
Solution
−2(11430+r4)
Show Solution

Find the roots
r1=−2445720−2445720i,r2=2445720+2445720i
Alternative Form
r1≈−7.311333−7.311333i,r2≈7.311333+7.311333i
Evaluate
100−22960−1×r4×2
To find the roots of the expression,set the expression equal to 0
100−22960−1×r4×2=0
Multiply the terms
More Steps

Multiply the terms
1×r4×2
Rewrite the expression
r4×2
Use the commutative property to reorder the terms
2r4
100−22960−2r4=0
Subtract the numbers
−22860−2r4=0
Move the constant to the right-hand side and change its sign
−2r4=0+22860
Removing 0 doesn't change the value,so remove it from the expression
−2r4=22860
Change the signs on both sides of the equation
2r4=−22860
Divide both sides
22r4=2−22860
Divide the numbers
r4=2−22860
Divide the numbers
More Steps

Evaluate
2−22860
Reduce the numbers
1−11430
Calculate
−11430
r4=−11430
Take the root of both sides of the equation and remember to use both positive and negative roots
r=±4−11430
Simplify the expression
More Steps

Evaluate
4−11430
Rewrite the expression
411430×(22+22i)
Apply the distributive property
411430×22+411430×22i
Multiply the numbers
More Steps

Evaluate
411430×22
Multiply the numbers
2411430×2
Multiply the numbers
2445720
2445720+411430×22i
Multiply the numbers
2445720+2445720i
r=±(2445720+2445720i)
Separate the equation into 2 possible cases
r=2445720+2445720ir=−2445720−2445720i
Solution
r1=−2445720−2445720i,r2=2445720+2445720i
Alternative Form
r1≈−7.311333−7.311333i,r2≈7.311333+7.311333i
Show Solution
