Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=1001−31,x2=1001+31
Alternative Form
x1≈−0.045678,x2≈0.065678
Evaluate
1000x2−20x−3=0
Substitute a=1000,b=−20 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=2×100020±(−20)2−4×1000(−3)
Simplify the expression
x=200020±(−20)2−4×1000(−3)
Simplify the expression
More Steps

Evaluate
(−20)2−4×1000(−3)
Multiply
More Steps

Multiply the terms
4×1000(−3)
Rewrite the expression
−4×1000×3
Multiply the terms
−12000
(−20)2−(−12000)
Rewrite the expression
202−(−12000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
202+12000
Evaluate the power
400+12000
Add the numbers
12400
x=200020±12400
Simplify the radical expression
More Steps

Evaluate
12400
Write the expression as a product where the root of one of the factors can be evaluated
400×31
Write the number in exponential form with the base of 20
202×31
The root of a product is equal to the product of the roots of each factor
202×31
Reduce the index of the radical and exponent with 2
2031
x=200020±2031
Separate the equation into 2 possible cases
x=200020+2031x=200020−2031
Simplify the expression
More Steps

Evaluate
x=200020+2031
Divide the terms
More Steps

Evaluate
200020+2031
Rewrite the expression
200020(1+31)
Cancel out the common factor 20
1001+31
x=1001+31
x=1001+31x=200020−2031
Simplify the expression
More Steps

Evaluate
x=200020−2031
Divide the terms
More Steps

Evaluate
200020−2031
Rewrite the expression
200020(1−31)
Cancel out the common factor 20
1001−31
x=1001−31
x=1001+31x=1001−31
Solution
x1=1001−31,x2=1001+31
Alternative Form
x1≈−0.045678,x2≈0.065678
Show Solution
