Question
Factor the expression
5x(21−20x4)
Evaluate
105x−100x5
Rewrite the expression
5x×21−5x×20x4
Solution
5x(21−20x4)
Show Solution

Find the roots
x1=−10410500,x2=0,x3=10410500
Alternative Form
x1≈−1.012272,x2=0,x3≈1.012272
Evaluate
105x−(100x5)
To find the roots of the expression,set the expression equal to 0
105x−(100x5)=0
Multiply the terms
105x−100x5=0
Factor the expression
5x(21−20x4)=0
Divide both sides
x(21−20x4)=0
Separate the equation into 2 possible cases
x=021−20x4=0
Solve the equation
More Steps

Evaluate
21−20x4=0
Move the constant to the right-hand side and change its sign
−20x4=0−21
Removing 0 doesn't change the value,so remove it from the expression
−20x4=−21
Change the signs on both sides of the equation
20x4=21
Divide both sides
2020x4=2021
Divide the numbers
x4=2021
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±42021
Simplify the expression
More Steps

Evaluate
42021
To take a root of a fraction,take the root of the numerator and denominator separately
420421
Multiply by the Conjugate
420×4203421×4203
Simplify
420×4203421×24500
Multiply the numbers
420×42032410500
Multiply the numbers
202410500
Cancel out the common factor 2
10410500
x=±10410500
Separate the equation into 2 possible cases
x=10410500x=−10410500
x=0x=10410500x=−10410500
Solution
x1=−10410500,x2=0,x3=10410500
Alternative Form
x1≈−1.012272,x2=0,x3≈1.012272
Show Solution
