Question
Simplify the expression
750a2−27a−4
Evaluate
10a×75a−27a−4
Solution
More Steps

Evaluate
10a×75a
Multiply the terms
750a×a
Multiply the terms
750a2
750a2−27a−4
Show Solution

Find the roots
a1=150027−12729,a2=150027+12729
Alternative Form
a1≈−0.057215,a2≈0.093215
Evaluate
10a×75a−27a−4
To find the roots of the expression,set the expression equal to 0
10a×75a−27a−4=0
Multiply
More Steps

Multiply the terms
10a×75a
Multiply the terms
750a×a
Multiply the terms
750a2
750a2−27a−4=0
Substitute a=750,b=−27 and c=−4 into the quadratic formula a=2a−b±b2−4ac
a=2×75027±(−27)2−4×750(−4)
Simplify the expression
a=150027±(−27)2−4×750(−4)
Simplify the expression
More Steps

Evaluate
(−27)2−4×750(−4)
Multiply
More Steps

Multiply the terms
4×750(−4)
Rewrite the expression
−4×750×4
Multiply the terms
−12000
(−27)2−(−12000)
Rewrite the expression
272−(−12000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
272+12000
Evaluate the power
729+12000
Add the numbers
12729
a=150027±12729
Separate the equation into 2 possible cases
a=150027+12729a=150027−12729
Solution
a1=150027−12729,a2=150027+12729
Alternative Form
a1≈−0.057215,a2≈0.093215
Show Solution
