Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
a1=1013−199,a2=1013+199
Alternative Form
a1≈−0.110674,a2≈2.710674
Evaluate
10a2−26a−3=0
Substitute a=10,b=−26 and c=−3 into the quadratic formula a=2a−b±b2−4ac
a=2×1026±(−26)2−4×10(−3)
Simplify the expression
a=2026±(−26)2−4×10(−3)
Simplify the expression
More Steps

Evaluate
(−26)2−4×10(−3)
Multiply the numbers
More Steps

Multiply the terms
4×10(−3)
Rewrite the expression
−4×10×3
Multiply the terms
−40×3
Multiply the terms
−120
(−26)2−(−120)
Rewrite the expression
262−(−120)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
262+120
Evaluate the power
676+120
Add the numbers
796
a=2026±796
Simplify the radical expression
More Steps

Evaluate
796
Write the expression as a product where the root of one of the factors can be evaluated
4×199
Write the number in exponential form with the base of 2
22×199
The root of a product is equal to the product of the roots of each factor
22×199
Reduce the index of the radical and exponent with 2
2199
a=2026±2199
Separate the equation into 2 possible cases
a=2026+2199a=2026−2199
Simplify the expression
More Steps

Evaluate
a=2026+2199
Divide the terms
More Steps

Evaluate
2026+2199
Rewrite the expression
202(13+199)
Cancel out the common factor 2
1013+199
a=1013+199
a=1013+199a=2026−2199
Simplify the expression
More Steps

Evaluate
a=2026−2199
Divide the terms
More Steps

Evaluate
2026−2199
Rewrite the expression
202(13−199)
Cancel out the common factor 2
1013−199
a=1013−199
a=1013+199a=1013−199
Solution
a1=1013−199,a2=1013+199
Alternative Form
a1≈−0.110674,a2≈2.710674
Show Solution
