Question
Simplify the expression
100d2−82d−9
Evaluate
10d×10d−82d−9
Solution
More Steps

Evaluate
10d×10d
Multiply the terms
100d×d
Multiply the terms
100d2
100d2−82d−9
Show Solution

Find the roots
d1=10041−2581,d2=10041+2581
Alternative Form
d1≈−0.098035,d2≈0.918035
Evaluate
10d×10d−82d−9
To find the roots of the expression,set the expression equal to 0
10d×10d−82d−9=0
Multiply
More Steps

Multiply the terms
10d×10d
Multiply the terms
100d×d
Multiply the terms
100d2
100d2−82d−9=0
Substitute a=100,b=−82 and c=−9 into the quadratic formula d=2a−b±b2−4ac
d=2×10082±(−82)2−4×100(−9)
Simplify the expression
d=20082±(−82)2−4×100(−9)
Simplify the expression
More Steps

Evaluate
(−82)2−4×100(−9)
Multiply
More Steps

Multiply the terms
4×100(−9)
Rewrite the expression
−4×100×9
Multiply the terms
−3600
(−82)2−(−3600)
Rewrite the expression
822−(−3600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
822+3600
Evaluate the power
6724+3600
Add the numbers
10324
d=20082±10324
Simplify the radical expression
More Steps

Evaluate
10324
Write the expression as a product where the root of one of the factors can be evaluated
4×2581
Write the number in exponential form with the base of 2
22×2581
The root of a product is equal to the product of the roots of each factor
22×2581
Reduce the index of the radical and exponent with 2
22581
d=20082±22581
Separate the equation into 2 possible cases
d=20082+22581d=20082−22581
Simplify the expression
More Steps

Evaluate
d=20082+22581
Divide the terms
More Steps

Evaluate
20082+22581
Rewrite the expression
2002(41+2581)
Cancel out the common factor 2
10041+2581
d=10041+2581
d=10041+2581d=20082−22581
Simplify the expression
More Steps

Evaluate
d=20082−22581
Divide the terms
More Steps

Evaluate
20082−22581
Rewrite the expression
2002(41−2581)
Cancel out the common factor 2
10041−2581
d=10041−2581
d=10041+2581d=10041−2581
Solution
d1=10041−2581,d2=10041+2581
Alternative Form
d1≈−0.098035,d2≈0.918035
Show Solution
