Question
Solve the equation
m1=−1047000,m2=0,m3=1047000
Alternative Form
m1≈−0.914691,m2=0,m3≈0.914691
Evaluate
10m6=7m2×1
Multiply the terms
10m6=7m2
Add or subtract both sides
10m6−7m2=0
Factor the expression
m2(10m4−7)=0
Separate the equation into 2 possible cases
m2=010m4−7=0
The only way a power can be 0 is when the base equals 0
m=010m4−7=0
Solve the equation
More Steps

Evaluate
10m4−7=0
Move the constant to the right-hand side and change its sign
10m4=0+7
Removing 0 doesn't change the value,so remove it from the expression
10m4=7
Divide both sides
1010m4=107
Divide the numbers
m4=107
Take the root of both sides of the equation and remember to use both positive and negative roots
m=±4107
Simplify the expression
More Steps

Evaluate
4107
To take a root of a fraction,take the root of the numerator and denominator separately
41047
Multiply by the Conjugate
410×410347×4103
Simplify
410×410347×41000
Multiply the numbers
410×410347000
Multiply the numbers
1047000
m=±1047000
Separate the equation into 2 possible cases
m=1047000m=−1047000
m=0m=1047000m=−1047000
Solution
m1=−1047000,m2=0,m3=1047000
Alternative Form
m1≈−0.914691,m2=0,m3≈0.914691
Show Solution
