Question
Solve the equation
x1=564−8154,x2=564+8154
Alternative Form
x1≈−7.055478,x2≈32.655478
Evaluate
(10×256x2)−x−9=0
Multiply the terms
More Steps

Multiply the terms
10×256x2
Cancel out the common factor 2
5×128x2
Multiply the terms
1285x2
1285x2−x−9=0
Multiply both sides of the equation by LCD
(1285x2−x−9)×128=0×128
Simplify the equation
More Steps

Evaluate
(1285x2−x−9)×128
Apply the distributive property
1285x2×128−x×128−9×128
Simplify
5x2−x×128−9×128
Use the commutative property to reorder the terms
5x2−128x−9×128
Multiply the numbers
5x2−128x−1152
5x2−128x−1152=0×128
Any expression multiplied by 0 equals 0
5x2−128x−1152=0
Substitute a=5,b=−128 and c=−1152 into the quadratic formula x=2a−b±b2−4ac
x=2×5128±(−128)2−4×5(−1152)
Simplify the expression
x=10128±(−128)2−4×5(−1152)
Simplify the expression
More Steps

Evaluate
(−128)2−4×5(−1152)
Multiply
More Steps

Multiply the terms
4×5(−1152)
Rewrite the expression
−4×5×1152
Multiply the terms
−23040
(−128)2−(−23040)
Rewrite the expression
1282−(−23040)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1282+23040
Evaluate the power
16384+23040
Add the numbers
39424
x=10128±39424
Simplify the radical expression
More Steps

Evaluate
39424
Write the expression as a product where the root of one of the factors can be evaluated
256×154
Write the number in exponential form with the base of 16
162×154
The root of a product is equal to the product of the roots of each factor
162×154
Reduce the index of the radical and exponent with 2
16154
x=10128±16154
Separate the equation into 2 possible cases
x=10128+16154x=10128−16154
Simplify the expression
More Steps

Evaluate
x=10128+16154
Divide the terms
More Steps

Evaluate
10128+16154
Rewrite the expression
102(64+8154)
Cancel out the common factor 2
564+8154
x=564+8154
x=564+8154x=10128−16154
Simplify the expression
More Steps

Evaluate
x=10128−16154
Divide the terms
More Steps

Evaluate
10128−16154
Rewrite the expression
102(64−8154)
Cancel out the common factor 2
564−8154
x=564−8154
x=564+8154x=564−8154
Solution
x1=564−8154,x2=564+8154
Alternative Form
x1≈−7.055478,x2≈32.655478
Show Solution
