Question
Simplify the expression
−611x6−21
Evaluate
1211(−2x6)−21
Solution
More Steps

Evaluate
1211(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−1211×2
Reduce the numbers
−611×1
Multiply the numbers
−611
−611x6−21
Show Solution

Factor the expression
−61(11x6+3)
Evaluate
1211(−2x6)−21
Multiply the numbers
More Steps

Evaluate
1211(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−1211×2
Reduce the numbers
−611×1
Multiply the numbers
−611
Evaluate
−611x6
−611x6−21
Solution
−61(11x6+3)
Show Solution

Find the roots
x1=−22681×115−2263×115i,x2=22681×115+2263×115i
Alternative Form
x1≈−0.697406−0.402647i,x2≈0.697406+0.402647i
Evaluate
1211(−2x6)−21
To find the roots of the expression,set the expression equal to 0
1211(−2x6)−21=0
Multiply the numbers
More Steps

Evaluate
1211(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−1211×2
Reduce the numbers
−611×1
Multiply the numbers
−611
−611x6−21=0
Move the constant to the right-hand side and change its sign
−611x6=0+21
Add the terms
−611x6=21
Change the signs on both sides of the equation
611x6=−21
Multiply by the reciprocal
611x6×116=−21×116
Multiply
x6=−21×116
Multiply
More Steps

Evaluate
−21×116
Reduce the numbers
−1×113
Multiply the numbers
−113
x6=−113
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±6−113
Simplify the expression
More Steps

Evaluate
6−113
To take a root of a fraction,take the root of the numerator and denominator separately
6116−3
Simplify the radical expression
More Steps

Evaluate
6−3
Rewrite the expression
63×(23+21i)
Apply the distributive property
63×23+63×21i
Multiply the numbers
2332+63×21i
Multiply the numbers
2332+263i
Evaluate the power
239+263i
611239+263i
Simplify
261139+261163i
Rearrange the numbers
More Steps

Evaluate
261139
Multiply by the Conjugate
2611×611539×6115
Multiply the numbers
2611×6115681×115
Multiply the numbers
22681×115
22681×115+261163i
Rearrange the numbers
More Steps

Evaluate
261163
Multiply by the Conjugate
2611×611563×6115
The product of roots with the same index is equal to the root of the product
2611×611563×115
Multiply the numbers
2263×115
22681×115+2263×115i
x=±(22681×115+2263×115i)
Separate the equation into 2 possible cases
x=22681×115+2263×115ix=−22681×115−2263×115i
Solution
x1=−22681×115−2263×115i,x2=22681×115+2263×115i
Alternative Form
x1≈−0.697406−0.402647i,x2≈0.697406+0.402647i
Show Solution
