Question
Simplify the expression
3621−q6
Evaluate
1211−61×6q5q−31
Multiply the terms
More Steps

Multiply the terms
−61×6q5q
Multiply the terms
More Steps

Evaluate
61×6q5q
Multiply the terms
36q5q
Multiply the terms
36q5×q
Multiply the terms
36q6
−36q6
1211−36q6−31
Reduce fractions to a common denominator
12×311×3−36q6−3×1212
Multiply the numbers
3611×3−36q6−3×1212
Multiply the numbers
3611×3−36q6−3612
Write all numerators above the common denominator
3611×3−q6−12
Multiply the numbers
3633−q6−12
Solution
3621−q6
Show Solution

Find the roots
q1=−621,q2=621
Alternative Form
q1≈−1.661001,q2≈1.661001
Evaluate
1211−61×6q5q−31
To find the roots of the expression,set the expression equal to 0
1211−61×6q5q−31=0
Multiply the terms
More Steps

Multiply the terms
61×6q5q
Multiply the terms
More Steps

Evaluate
61×6q5
Multiply the terms
6×6q5
Multiply the terms
36q5
36q5q
Multiply the terms
36q5×q
Multiply the terms
More Steps

Evaluate
q5×q
Use the product rule an×am=an+m to simplify the expression
q5+1
Add the numbers
q6
36q6
1211−36q6−31=0
Subtract the terms
More Steps

Simplify
1211−36q6
Reduce fractions to a common denominator
12×311×3−36q6
Multiply the numbers
3611×3−36q6
Write all numerators above the common denominator
3611×3−q6
Multiply the numbers
3633−q6
3633−q6−31=0
Subtract the terms
More Steps

Simplify
3633−q6−31
Reduce fractions to a common denominator
3633−q6−3×1212
Multiply the numbers
3633−q6−3612
Write all numerators above the common denominator
3633−q6−12
Subtract the numbers
3621−q6
3621−q6=0
Simplify
21−q6=0
Rewrite the expression
−q6=−21
Change the signs on both sides of the equation
q6=21
Take the root of both sides of the equation and remember to use both positive and negative roots
q=±621
Separate the equation into 2 possible cases
q=621q=−621
Solution
q1=−621,q2=621
Alternative Form
q1≈−1.661001,q2≈1.661001
Show Solution
