Question
Simplify the expression
739926x6+2590074x3
Evaluate
1111x6×666+7778x3×333
Multiply the terms
739926x6+7778x3×333
Solution
739926x6+2590074x3
Show Solution

Factor the expression
666x3(1111x3+3889)
Evaluate
1111x6×666+7778x3×333
Multiply the terms
739926x6+7778x3×333
Multiply the terms
739926x6+2590074x3
Rewrite the expression
666x3×1111x3+666x3×3889
Solution
666x3(1111x3+3889)
Show Solution

Find the roots
x1=−111133889×11112,x2=0
Alternative Form
x1≈−1.51836,x2=0
Evaluate
1111x6×666+7778x3×333
To find the roots of the expression,set the expression equal to 0
1111x6×666+7778x3×333=0
Multiply the terms
739926x6+7778x3×333=0
Multiply the terms
739926x6+2590074x3=0
Factor the expression
666x3(1111x3+3889)=0
Divide both sides
x3(1111x3+3889)=0
Separate the equation into 2 possible cases
x3=01111x3+3889=0
The only way a power can be 0 is when the base equals 0
x=01111x3+3889=0
Solve the equation
More Steps

Evaluate
1111x3+3889=0
Move the constant to the right-hand side and change its sign
1111x3=0−3889
Removing 0 doesn't change the value,so remove it from the expression
1111x3=−3889
Divide both sides
11111111x3=1111−3889
Divide the numbers
x3=1111−3889
Use b−a=−ba=−ba to rewrite the fraction
x3=−11113889
Take the 3-th root on both sides of the equation
3x3=3−11113889
Calculate
x=3−11113889
Simplify the root
More Steps

Evaluate
3−11113889
An odd root of a negative radicand is always a negative
−311113889
To take a root of a fraction,take the root of the numerator and denominator separately
−3111133889
Multiply by the Conjugate
31111×311112−33889×311112
The product of roots with the same index is equal to the root of the product
31111×311112−33889×11112
Multiply the numbers
1111−33889×11112
Calculate
−111133889×11112
x=−111133889×11112
x=0x=−111133889×11112
Solution
x1=−111133889×11112,x2=0
Alternative Form
x1≈−1.51836,x2=0
Show Solution
