Question
Simplify the expression
−13200Ja2Tn19
Evaluate
114÷4÷(22Jia×900Tian)
Divide the numbers
28.5÷(22Jia×900Tian)
Multiply
More Steps

Multiply the terms
22Jia×900Tian
Multiply the terms
19800JiaTian
Multiply the terms
19800Jia2Tin
Multiply the numbers
19800iJa2Tin
Multiply the numbers
More Steps

Evaluate
19800i×i
Multiply
19800i2
Use i2=−1 to transform the expression
19800(−1)
Calculate
−19800
−19800Ja2Tn
28.5÷(−19800Ja2Tn)
Convert the decimal into a fraction
More Steps

Evaluate
28.5
Convert the decimal into a fraction
10285
Reduce the fraction
257
257÷(−19800Ja2Tn)
Multiply by the reciprocal
257×−19800Ja2Tn1
Rewrite the expression
257(−19800Ja2Tn1)
Multiplying or dividing an odd number of negative terms equals a negative
−257×19800Ja2Tn1
Cancel out the common factor 3
−219×6600Ja2Tn1
Multiply the terms
−2×6600Ja2Tn19
Solution
−13200Ja2Tn19
Show Solution

Find the excluded values
J=0,a=0,T=0,n=0
Evaluate
114÷4÷(22Jia×900Tian)
To find the excluded values,set the denominators equal to 0
JaTan=0
Multiply the terms
Ja2Tn=0
Separate the equation into 4 possible cases
J=0a2=0T=0n=0
The only way a power can be 0 is when the base equals 0
J=0a=0T=0n=0
Solution
J=0,a=0,T=0,n=0
Show Solution
