Question
Simplify the expression
114−1212785676x3
Evaluate
114−606392838x3×2
Solution
114−1212785676x3
Show Solution

Factor the expression
6(19−202130946x3)
Evaluate
114−606392838x3×2
Multiply the terms
114−1212785676x3
Solution
6(19−202130946x3)
Show Solution

Find the roots
x=202130946319×2021309462
Alternative Form
x≈0.004547
Evaluate
114−606392838x3×2
To find the roots of the expression,set the expression equal to 0
114−606392838x3×2=0
Multiply the terms
114−1212785676x3=0
Move the constant to the right-hand side and change its sign
−1212785676x3=0−114
Removing 0 doesn't change the value,so remove it from the expression
−1212785676x3=−114
Change the signs on both sides of the equation
1212785676x3=114
Divide both sides
12127856761212785676x3=1212785676114
Divide the numbers
x3=1212785676114
Cancel out the common factor 6
x3=20213094619
Take the 3-th root on both sides of the equation
3x3=320213094619
Calculate
x=320213094619
Solution
More Steps

Evaluate
320213094619
To take a root of a fraction,take the root of the numerator and denominator separately
3202130946319
Multiply by the Conjugate
3202130946×32021309462319×32021309462
The product of roots with the same index is equal to the root of the product
3202130946×32021309462319×2021309462
Multiply the numbers
More Steps

Evaluate
3202130946×32021309462
The product of roots with the same index is equal to the root of the product
3202130946×2021309462
Calculate the product
32021309463
Reduce the index of the radical and exponent with 3
202130946
202130946319×2021309462
x=202130946319×2021309462
Alternative Form
x≈0.004547
Show Solution
