Question
Simplify the expression
101584717631741952×8805k2∣k∣
Evaluate
1168k×7243∣1168k×8802∣×1168k×8805
Multiply the terms
1168k×7243∣10280736k∣×1168k×8805
Calculate the absolute value
1168k×7243×10280736∣k∣×1168k×8805
Multiply the terms
More Steps

Evaluate
1168×7243×10280736×1168×8805
Multiply the terms
8459824×10280736×1168×8805
Multiply the terms
86973217150464×1168×8805
Multiply the terms
101584717631741952×8805
101584717631741952×8805k∣k∣×k
Solution
101584717631741952×8805k2∣k∣
Show Solution

Find the roots
k=0
Evaluate
1168k×7243∣1168k×8802∣×1168k×8805
To find the roots of the expression,set the expression equal to 0
1168k×7243∣1168k×8802∣×1168k×8805=0
Multiply the terms
1168k×7243∣10280736k∣×1168k×8805=0
Calculate the absolute value
1168k×7243×10280736∣k∣×1168k×8805=0
Multiply
More Steps

Multiply the terms
1168k×7243×10280736∣k∣×1168k×8805
Multiply the terms
More Steps

Evaluate
1168×7243×10280736×1168×8805
Multiply the terms
8459824×10280736×1168×8805
Multiply the terms
86973217150464×1168×8805
Multiply the terms
101584717631741952×8805
101584717631741952×8805k∣k∣×k
Multiply the terms
101584717631741952×8805k2∣k∣
101584717631741952×8805k2∣k∣=0
Rewrite the expression
8805×101584717631741952k2∣k∣=0
Elimination the left coefficient
k2∣k∣=0
Separate the equation into 2 possible cases
k2=0∣k∣=0
The only way a power can be 0 is when the base equals 0
k=0∣k∣=0
Solve the equation
k=0k=0
Solution
k=0
Show Solution
