Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
x∈(−∞,−633)∪(0,633)
Evaluate
11x>6x3×2
Multiply the terms
11x>12x3
Move the expression to the left side
11x−12x3>0
Rewrite the expression
11x−12x3=0
Factor the expression
x(11−12x2)=0
Separate the equation into 2 possible cases
x=011−12x2=0
Solve the equation
More Steps

Evaluate
11−12x2=0
Move the constant to the right-hand side and change its sign
−12x2=0−11
Removing 0 doesn't change the value,so remove it from the expression
−12x2=−11
Change the signs on both sides of the equation
12x2=11
Divide both sides
1212x2=1211
Divide the numbers
x2=1211
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±1211
Simplify the expression
More Steps

Evaluate
1211
To take a root of a fraction,take the root of the numerator and denominator separately
1211
Simplify the radical expression
2311
Multiply by the Conjugate
23×311×3
Multiply the numbers
23×333
Multiply the numbers
633
x=±633
Separate the equation into 2 possible cases
x=633x=−633
x=0x=633x=−633
Determine the test intervals using the critical values
x<−633−633<x<00<x<633x>633
Choose a value form each interval
x1=−2x2=−1233x3=1233x4=2
To determine if x<−633 is the solution to the inequality,test if the chosen value x=−2 satisfies the initial inequality
More Steps

Evaluate
11(−2)>12(−2)3
Multiply the numbers
More Steps

Evaluate
11(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−11×2
Multiply the numbers
−22
−22>12(−2)3
Multiply the terms
More Steps

Evaluate
12(−2)3
Evaluate the power
12(−8)
Multiply the numbers
−96
−22>−96
Check the inequality
true
x<−633 is the solutionx2=−1233x3=1233x4=2
To determine if −633<x<0 is the solution to the inequality,test if the chosen value x=−1233 satisfies the initial inequality
More Steps

Evaluate
11(−1233)>12(−1233)3
Multiply the numbers
More Steps

Evaluate
11(−1233)
Multiplying or dividing an odd number of negative terms equals a negative
−11×1233
Multiply the numbers
−121133
−121133>12(−1233)3
Multiply the terms
More Steps

Evaluate
12(−1233)3
Evaluate the power
12(−5761133)
Multiply the numbers
−481133
−121133>−481133
Calculate
−5.265849>−481133
Calculate
−5.265849>−1.316462
Check the inequality
false
x<−633 is the solution−633<x<0 is not a solutionx3=1233x4=2
To determine if 0<x<633 is the solution to the inequality,test if the chosen value x=1233 satisfies the initial inequality
More Steps

Evaluate
11×1233>12(1233)3
Multiply the numbers
121133>12(1233)3
Multiply the terms
More Steps

Evaluate
12(1233)3
Evaluate the power
12×5761133
Multiply the numbers
481133
121133>481133
Calculate
5.265849>481133
Calculate
5.265849>1.316462
Check the inequality
true
x<−633 is the solution−633<x<0 is not a solution0<x<633 is the solutionx4=2
To determine if x>633 is the solution to the inequality,test if the chosen value x=2 satisfies the initial inequality
More Steps

Evaluate
11×2>12×23
Multiply the numbers
22>12×23
Multiply the terms
More Steps

Evaluate
12×23
Evaluate the power
12×8
Multiply the numbers
96
22>96
Check the inequality
false
x<−633 is the solution−633<x<0 is not a solution0<x<633 is the solutionx>633 is not a solution
Solution
x∈(−∞,−633)∪(0,633)
Show Solution
