Question
12(2x−3y)2−16(3y−2x)
Simplify the expression
48x2−144xy+108y2−48y+32x
Evaluate
12(2x−3y)2−16(3y−2x)
Expand the expression
More Steps

Calculate
12(2x−3y)2
Simplify
12(4x2−12xy+9y2)
Apply the distributive property
12×4x2−12×12xy+12×9y2
Multiply the numbers
48x2−12×12xy+12×9y2
Multiply the numbers
48x2−144xy+12×9y2
Multiply the numbers
48x2−144xy+108y2
48x2−144xy+108y2−16(3y−2x)
Solution
More Steps

Calculate
−16(3y−2x)
Apply the distributive property
−16×3y−(−16×2x)
Multiply the numbers
−48y−(−16×2x)
Multiply the numbers
−48y−(−32x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−48y+32x
48x2−144xy+108y2−48y+32x
Show Solution

Factor the expression
4(2x−3y)(6x−9y+4)
Evaluate
12(2x−3y)2−16(3y−2x)
Rewrite the expression
4(2x−3y)×3(2x−3y)+4(2x−3y)×4
Factor out 4(2x−3y) from the expression
4(2x−3y)(3(2x−3y)+4)
Solution
4(2x−3y)(6x−9y+4)
Show Solution
