Question
Solve the differential equation
y=−x212+C,C∈R
Evaluate
120=5x3y′
Rewrite the expression
5x3y′=120
Rewrite the expression
5x3dxdy=120
Rewrite the expression
dxdy=5x31×120
Multiply the terms
More Steps

Multiply the terms
5x31×120
Cancel out the common factor 5
x31×24
Multiply the terms
x324
dxdy=x324
Transform the expression
dy=x324×dx
Integrate the left-hand side of the equation with respect to y and the right-hand side of the equation with respect to x
∫1dy=∫x324dx
Calculate
More Steps

Evaluate
∫1dy
Use the property of integral ∫kdx=kx
y
Add the constant of integral C1
y+C1,C1∈R
y+C1=∫x324dx,C1∈R
Calculate
More Steps

Evaluate
∫x324dx
Rewrite the expression
∫24×x31dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
24×∫x31dx
Use the property of integral ∫xndx=n+1xn+1
24×−3+1x−3+1
Simplify
More Steps

Evaluate
−3+1x−3+1
Add the numbers
−3+1x−2
Add the numbers
−2x−2
Use b−a=−ba=−ba to rewrite the fraction
−2x−2
Express with a positive exponent using a−n=an1
−2x21
Simplify
−2x21
24(−2x21)
Multiplying or dividing an odd number of negative terms equals a negative
−24×2x21
Cancel out the common factor 2
−12×x21
Multiply the terms
−x212
Add the constant of integral C2
−x212+C2,C2∈R
y+C1=−x212+C2,C1∈R,C2∈R
Solution
y=−x212+C,C∈R
Show Solution
