Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−2123+16845,x2=2−123+16845
Alternative Form
x1≈−126.394145,x2≈3.394145
Evaluate
123(x−3)=60−x2
Swap the sides
60−x2=123(x−3)
Expand the expression
More Steps

Evaluate
123(x−3)
Apply the distributive property
123x−123×3
Multiply the numbers
123x−369
60−x2=123x−369
Move the expression to the left side
429−x2−123x=0
Rewrite in standard form
−x2−123x+429=0
Multiply both sides
x2+123x−429=0
Substitute a=1,b=123 and c=−429 into the quadratic formula x=2a−b±b2−4ac
x=2−123±1232−4(−429)
Simplify the expression
More Steps

Evaluate
1232−4(−429)
Multiply the numbers
More Steps

Evaluate
4(−429)
Multiplying or dividing an odd number of negative terms equals a negative
−4×429
Multiply the numbers
−1716
1232−(−1716)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1232+1716
Evaluate the power
15129+1716
Add the numbers
16845
x=2−123±16845
Separate the equation into 2 possible cases
x=2−123+16845x=2−123−16845
Use b−a=−ba=−ba to rewrite the fraction
x=2−123+16845x=−2123+16845
Solution
x1=−2123+16845,x2=2−123+16845
Alternative Form
x1≈−126.394145,x2≈3.394145
Show Solution
