Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=12524−3814,x2=12524+3814
Alternative Form
x1≈−0.492736,x2≈0.876736
Evaluate
125x2−48x−54=0
Substitute a=125,b=−48 and c=−54 into the quadratic formula x=2a−b±b2−4ac
x=2×12548±(−48)2−4×125(−54)
Simplify the expression
x=25048±(−48)2−4×125(−54)
Simplify the expression
More Steps

Evaluate
(−48)2−4×125(−54)
Multiply
More Steps

Multiply the terms
4×125(−54)
Rewrite the expression
−4×125×54
Multiply the terms
−27000
(−48)2−(−27000)
Rewrite the expression
482−(−27000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
482+27000
Evaluate the power
2304+27000
Add the numbers
29304
x=25048±29304
Simplify the radical expression
More Steps

Evaluate
29304
Write the expression as a product where the root of one of the factors can be evaluated
36×814
Write the number in exponential form with the base of 6
62×814
The root of a product is equal to the product of the roots of each factor
62×814
Reduce the index of the radical and exponent with 2
6814
x=25048±6814
Separate the equation into 2 possible cases
x=25048+6814x=25048−6814
Simplify the expression
More Steps

Evaluate
x=25048+6814
Divide the terms
More Steps

Evaluate
25048+6814
Rewrite the expression
2502(24+3814)
Cancel out the common factor 2
12524+3814
x=12524+3814
x=12524+3814x=25048−6814
Simplify the expression
More Steps

Evaluate
x=25048−6814
Divide the terms
More Steps

Evaluate
25048−6814
Rewrite the expression
2502(24−3814)
Cancel out the common factor 2
12524−3814
x=12524−3814
x=12524+3814x=12524−3814
Solution
x1=12524−3814,x2=12524+3814
Alternative Form
x1≈−0.492736,x2≈0.876736
Show Solution
