Question
Simplify the expression
5a3−5a−9072a5
Evaluate
12a3−7a3−5a−18a3×9a2×56
Multiply
More Steps

Multiply the terms
−18a3×9a2×56
Multiply the terms
More Steps

Evaluate
18×9×56
Multiply the terms
162×56
Multiply the numbers
9072
−9072a3×a2
Multiply the terms with the same base by adding their exponents
−9072a3+2
Add the numbers
−9072a5
12a3−7a3−5a−9072a5
Solution
More Steps

Evaluate
12a3−7a3
Collect like terms by calculating the sum or difference of their coefficients
(12−7)a3
Subtract the numbers
5a3
5a3−5a−9072a5
Show Solution

Factor the expression
a(5a2−5−9072a4)
Evaluate
12a3−7a3−5a−18a3×9a2×56
Multiply
More Steps

Multiply the terms
18a3×9a2×56
Multiply the terms
More Steps

Evaluate
18×9×56
Multiply the terms
162×56
Multiply the numbers
9072
9072a3×a2
Multiply the terms with the same base by adding their exponents
9072a3+2
Add the numbers
9072a5
12a3−7a3−5a−9072a5
Subtract the terms
More Steps

Simplify
12a3−7a3
Collect like terms by calculating the sum or difference of their coefficients
(12−7)a3
Subtract the numbers
5a3
5a3−5a−9072a5
Rewrite the expression
a×5a2−a×5−a×9072a4
Solution
a(5a2−5−9072a4)
Show Solution

Find the roots
a=0
Evaluate
12a3−7a3−5a−18a3×9a2×56
To find the roots of the expression,set the expression equal to 0
12a3−7a3−5a−18a3×9a2×56=0
Subtract the terms
More Steps

Simplify
12a3−7a3
Collect like terms by calculating the sum or difference of their coefficients
(12−7)a3
Subtract the numbers
5a3
5a3−5a−18a3×9a2×56=0
Multiply
More Steps

Multiply the terms
18a3×9a2×56
Multiply the terms
More Steps

Evaluate
18×9×56
Multiply the terms
162×56
Multiply the numbers
9072
9072a3×a2
Multiply the terms with the same base by adding their exponents
9072a3+2
Add the numbers
9072a5
5a3−5a−9072a5=0
Factor the expression
a(5a2−5−9072a4)=0
Separate the equation into 2 possible cases
a=05a2−5−9072a4=0
Solve the equation
More Steps

Evaluate
5a2−5−9072a4=0
Solve the equation using substitution t=a2
5t−5−9072t2=0
Rewrite in standard form
−9072t2+5t−5=0
Multiply both sides
9072t2−5t+5=0
Substitute a=9072,b=−5 and c=5 into the quadratic formula t=2a−b±b2−4ac
t=2×90725±(−5)2−4×9072×5
Simplify the expression
t=181445±(−5)2−4×9072×5
Simplify the expression
More Steps

Evaluate
(−5)2−4×9072×5
Multiply the terms
(−5)2−181440
Rewrite the expression
52−181440
Evaluate the power
25−181440
Subtract the numbers
−181415
t=181445±−181415
Simplify the radical expression
More Steps

Evaluate
−181415
Evaluate the power
181415×−1
Evaluate the power
181415×i
t=181445±181415×i
Separate the equation into 2 possible cases
t=181445+181415×it=181445−181415×i
Simplify the expression
t=181445+18144181415it=181445−181415×i
Simplify the expression
t=181445+18144181415it=181445−18144181415i
Substitute back
a2=181445+18144181415ia2=181445−18144181415i
Solve the equation for a
More Steps

Substitute back
a2=181445+18144181415i
Simplify
a=181445+18144181415i
Rewrite the complex number in polar form
a=25235cosarctan18144518144181415+isinarctan18144518144181415
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
a=25235×cos2arctan(18144518144181415)+2kπ+isin2arctan(18144518144181415)+2kπ
Simplify
a=4241715cos2arctan(18144518144181415)+2kπ+isin2arctan(18144518144181415)+2kπ
Since n=2,substitute k=0,1 into the expression
a1=4241715cos2arctan(18144518144181415)+2×0×π+isin2arctan(18144518144181415)+2×0×πa2=4241715cos2arctan(18144518144181415)+2×1×π+isin2arctan(18144518144181415)+2×1×π
Calculate
a1=4241715cos2arctan(5181415)+isin2arctan(5181415)a2=4241715cos2arctan(18144518144181415)+2×1×π+isin2arctan(18144518144181415)+2×1×π
Calculate
a1=4241715cos2arctan(5181415)+isin2arctan(5181415)a2=4241715cos2arctan(5181415)+2π+isin2arctan(5181415)+2π
Calculate
a1=4241715×cos(2arctan(5181415))+4241715×sin(2arctan(5181415))ia2=4241715×cos(2arctan(5181415)+2π)+4241715×sin(2arctan(5181415)+2π)i
a1=4241715×cos(2arctan(5181415))+4241715×sin(2arctan(5181415))ia2=4241715×cos(2arctan(5181415)+2π)+4241715×sin(2arctan(5181415)+2π)ia2=181445−18144181415i
Solve the equation for a
More Steps

Substitute back
a2=181445−18144181415i
Simplify
a=181445−18144181415i
Rewrite the complex number in polar form
a=25235(cos(arctan(−5181415)+2π)+isin(arctan(−5181415)+2π))
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
a=25235×cos2arctan(−5181415)+2π+2kπ+isin2arctan(−5181415)+2π+2kπ
Simplify
a=4241715cos2arctan(−5181415)+2π+2kπ+isin2arctan(−5181415)+2π+2kπ
Since n=2,substitute k=0,1 into the expression
a1=4241715cos2arctan(−5181415)+2π+2×0×π+isin2arctan(−5181415)+2π+2×0×πa2=4241715cos2arctan(−5181415)+2π+2×1×π+isin2arctan(−5181415)+2π+2×1×π
Calculate
a1=4241715cos2arctan(−5181415)+2π+isin2arctan(−5181415)+2πa2=4241715cos2arctan(−5181415)+2π+2×1×π+isin2arctan(−5181415)+2π+2×1×π
Calculate
a1=4241715cos2arctan(−5181415)+2π+isin2arctan(−5181415)+2πa2=4241715cos2arctan(−5181415)+2π+2π+isin2arctan(−5181415)+2π+2π
Calculate
a1=−4241715×cos(−2arctan(−5181415))+4241715×sin(2arctan(−5181415)+2π)ia2=4241715×cos(2arctan(−5181415)+2π+2π)+4241715×sin(2arctan(−5181415)+2π+2π)i
a1=4241715×cos(2arctan(5181415))+4241715×sin(2arctan(5181415))ia2=4241715×cos(2arctan(5181415)+2π)+4241715×sin(2arctan(5181415)+2π)ia1=−4241715×cos(−2arctan(−5181415))+4241715×sin(2arctan(−5181415)+2π)ia2=4241715×cos(2arctan(−5181415)+2π+2π)+4241715×sin(2arctan(−5181415)+2π+2π)i
a=0a∈/R
Solution
a=0
Show Solution
