Question
Factor the expression
4(3n2−11n−10)
Evaluate
12n2−44n−40
Solution
4(3n2−11n−10)
Show Solution

Find the roots
n1=611−241,n2=611+241
Alternative Form
n1≈−0.754029,n2≈4.420696
Evaluate
12n2−44n−40
To find the roots of the expression,set the expression equal to 0
12n2−44n−40=0
Substitute a=12,b=−44 and c=−40 into the quadratic formula n=2a−b±b2−4ac
n=2×1244±(−44)2−4×12(−40)
Simplify the expression
n=2444±(−44)2−4×12(−40)
Simplify the expression
More Steps

Evaluate
(−44)2−4×12(−40)
Multiply
More Steps

Multiply the terms
4×12(−40)
Rewrite the expression
−4×12×40
Multiply the terms
−1920
(−44)2−(−1920)
Rewrite the expression
442−(−1920)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
442+1920
Evaluate the power
1936+1920
Add the numbers
3856
n=2444±3856
Simplify the radical expression
More Steps

Evaluate
3856
Write the expression as a product where the root of one of the factors can be evaluated
16×241
Write the number in exponential form with the base of 4
42×241
The root of a product is equal to the product of the roots of each factor
42×241
Reduce the index of the radical and exponent with 2
4241
n=2444±4241
Separate the equation into 2 possible cases
n=2444+4241n=2444−4241
Simplify the expression
More Steps

Evaluate
n=2444+4241
Divide the terms
More Steps

Evaluate
2444+4241
Rewrite the expression
244(11+241)
Cancel out the common factor 4
611+241
n=611+241
n=611+241n=2444−4241
Simplify the expression
More Steps

Evaluate
n=2444−4241
Divide the terms
More Steps

Evaluate
2444−4241
Rewrite the expression
244(11−241)
Cancel out the common factor 4
611−241
n=611−241
n=611+241n=611−241
Solution
n1=611−241,n2=611+241
Alternative Form
n1≈−0.754029,n2≈4.420696
Show Solution
