Question
Solve the inequality
t<0.156993
Alternative Form
t∈(−∞,0.156993)
Evaluate
12t−2<−5t3×6
Multiply the terms
12t−2<−30t3
Move the expression to the left side
12t−2−(−30t3)<0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
12t−2+30t3<0
Rewrite the expression
12t−2+30t3=0
Factor the expression
2(6t−1+15t3)=0
Divide both sides
6t−1+15t3=0
Calculate
t≈0.156993
Determine the test intervals using the critical values
t<0.156993t>0.156993
Choose a value form each interval
t1=−1t2=1
To determine if t<0.156993 is the solution to the inequality,test if the chosen value t=−1 satisfies the initial inequality
More Steps

Evaluate
12(−1)−2<−30(−1)3
Simplify
More Steps

Evaluate
12(−1)−2
Simplify
−12−2
Subtract the numbers
−14
−14<−30(−1)3
Multiply the terms
More Steps

Evaluate
−30(−1)3
Evaluate the power
−30(−1)
Multiply the numbers
30
−14<30
Check the inequality
true
t<0.156993 is the solutiont2=1
To determine if t>0.156993 is the solution to the inequality,test if the chosen value t=1 satisfies the initial inequality
More Steps

Evaluate
12×1−2<−30×13
Simplify
More Steps

Evaluate
12×1−2
Any expression multiplied by 1 remains the same
12−2
Subtract the numbers
10
10<−30×13
Simplify
More Steps

Evaluate
−30×13
1 raised to any power equals to 1
−30×1
Any expression multiplied by 1 remains the same
−30
10<−30
Check the inequality
false
t<0.156993 is the solutiont>0.156993 is not a solution
Solution
t<0.156993
Alternative Form
t∈(−∞,0.156993)
Show Solution
