Question
Simplify the expression
12x−210x3−5x2
Evaluate
12x−15x2×14x−5x2
Solution
More Steps

Evaluate
−15x2×14x
Multiply the terms
−210x2×x
Multiply the terms with the same base by adding their exponents
−210x2+1
Add the numbers
−210x3
12x−210x3−5x2
Show Solution

Factor the expression
x(12−210x2−5x)
Evaluate
12x−15x2×14x−5x2
Multiply
More Steps

Evaluate
15x2×14x
Multiply the terms
210x2×x
Multiply the terms with the same base by adding their exponents
210x2+1
Add the numbers
210x3
12x−210x3−5x2
Rewrite the expression
x×12−x×210x2−x×5x
Solution
x(12−210x2−5x)
Show Solution

Find the roots
x1=−4205+10105,x2=0,x3=420−5+10105
Alternative Form
x1≈−0.251247,x2=0,x3≈0.227437
Evaluate
12x−15x2×14x−5x2
To find the roots of the expression,set the expression equal to 0
12x−15x2×14x−5x2=0
Multiply
More Steps

Multiply the terms
15x2×14x
Multiply the terms
210x2×x
Multiply the terms with the same base by adding their exponents
210x2+1
Add the numbers
210x3
12x−210x3−5x2=0
Factor the expression
x(12−210x2−5x)=0
Separate the equation into 2 possible cases
x=012−210x2−5x=0
Solve the equation
More Steps

Evaluate
12−210x2−5x=0
Rewrite in standard form
−210x2−5x+12=0
Multiply both sides
210x2+5x−12=0
Substitute a=210,b=5 and c=−12 into the quadratic formula x=2a−b±b2−4ac
x=2×210−5±52−4×210(−12)
Simplify the expression
x=420−5±52−4×210(−12)
Simplify the expression
More Steps

Evaluate
52−4×210(−12)
Multiply
52−(−10080)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+10080
Evaluate the power
25+10080
Add the numbers
10105
x=420−5±10105
Separate the equation into 2 possible cases
x=420−5+10105x=420−5−10105
Use b−a=−ba=−ba to rewrite the fraction
x=420−5+10105x=−4205+10105
x=0x=420−5+10105x=−4205+10105
Solution
x1=−4205+10105,x2=0,x3=420−5+10105
Alternative Form
x1≈−0.251247,x2=0,x3≈0.227437
Show Solution
