Question
Find the roots
x1=62−37,x2=62+37
Alternative Form
x1≈−0.68046,x2≈1.347127
Evaluate
12x2−8x−11
To find the roots of the expression,set the expression equal to 0
12x2−8x−11=0
Substitute a=12,b=−8 and c=−11 into the quadratic formula x=2a−b±b2−4ac
x=2×128±(−8)2−4×12(−11)
Simplify the expression
x=248±(−8)2−4×12(−11)
Simplify the expression
More Steps

Evaluate
(−8)2−4×12(−11)
Multiply
More Steps

Multiply the terms
4×12(−11)
Rewrite the expression
−4×12×11
Multiply the terms
−528
(−8)2−(−528)
Rewrite the expression
82−(−528)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
82+528
Evaluate the power
64+528
Add the numbers
592
x=248±592
Simplify the radical expression
More Steps

Evaluate
592
Write the expression as a product where the root of one of the factors can be evaluated
16×37
Write the number in exponential form with the base of 4
42×37
The root of a product is equal to the product of the roots of each factor
42×37
Reduce the index of the radical and exponent with 2
437
x=248±437
Separate the equation into 2 possible cases
x=248+437x=248−437
Simplify the expression
More Steps

Evaluate
x=248+437
Divide the terms
More Steps

Evaluate
248+437
Rewrite the expression
244(2+37)
Cancel out the common factor 4
62+37
x=62+37
x=62+37x=248−437
Simplify the expression
More Steps

Evaluate
x=248−437
Divide the terms
More Steps

Evaluate
248−437
Rewrite the expression
244(2−37)
Cancel out the common factor 4
62−37
x=62−37
x=62+37x=62−37
Solution
x1=62−37,x2=62+37
Alternative Form
x1≈−0.68046,x2≈1.347127
Show Solution
