Question
Solve the equation
y=9
Evaluate
13(y−4)−3(y−9)−5(y+4)=0
Calculate
More Steps

Evaluate
13(y−4)−3(y−9)−5(y+4)
Expand the expression
More Steps

Calculate
13(y−4)
Apply the distributive property
13y−13×4
Multiply the numbers
13y−52
13y−52−3(y−9)−5(y+4)
Expand the expression
More Steps

Calculate
−3(y−9)
Apply the distributive property
−3y−(−3×9)
Multiply the numbers
−3y−(−27)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3y+27
13y−52−3y+27−5(y+4)
Expand the expression
More Steps

Calculate
−5(y+4)
Apply the distributive property
−5y−5×4
Multiply the numbers
−5y−20
13y−52−3y+27−5y−20
Subtract the terms
More Steps

Evaluate
13y−3y−5y
Collect like terms by calculating the sum or difference of their coefficients
(13−3−5)y
Subtract the numbers
5y
5y−52+27−20
Calculate the sum or difference
5y−45
5y−45=0
Move the constant to the right-hand side and change its sign
5y=0+45
Removing 0 doesn't change the value,so remove it from the expression
5y=45
Divide both sides
55y=545
Divide the numbers
y=545
Solution
More Steps

Evaluate
545
Reduce the numbers
19
Calculate
9
y=9
Show Solution

Rewrite the equation
Rewrite in standard form
Rewrite in slope-intercept form
y=9
Evaluate
13(y−4)−3(y−9)−5(y+4)=0
Evaluate
More Steps

Evaluate
13(y−4)−3(y−9)−5(y+4)
Expand the expression
More Steps

Calculate
13(y−4)
Apply the distributive property
13y−13×4
Multiply the numbers
13y−52
13y−52−3(y−9)−5(y+4)
Expand the expression
More Steps

Calculate
−3(y−9)
Apply the distributive property
−3y−(−3×9)
Multiply the numbers
−3y−(−27)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3y+27
13y−52−3y+27−5(y+4)
Expand the expression
More Steps

Calculate
−5(y+4)
Apply the distributive property
−5y−5×4
Multiply the numbers
−5y−20
13y−52−3y+27−5y−20
Subtract the terms
More Steps

Evaluate
13y−3y−5y
Collect like terms by calculating the sum or difference of their coefficients
(13−3−5)y
Subtract the numbers
5y
5y−52+27−20
Calculate the sum or difference
5y−45
5y−45=0
Move the constant to the right side
5y=45
Solution
y=9
Show Solution
